Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015 ## Synthesis of Mn₂O₃/poly(styrene-co-butyl methacrylate) resin composites and their oil-absorbing properties Tao Zhang ^{a,b}, Qian Zhang ^c, Xinpei Wang ^c, Qiurong Li ^{c*}, Jian Rong ^b, Fengxian Qiu ^{b*} ^a Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China. ^c Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, Hebei Province, China. Tel./fax: +86 511 88791800. E-mail: liqiurong63@aliyun.com (Q. Li), fxqiu@126.com (F. Qiu) ^{*}Corresponding authors: Fig. S1. Penetrating profiles of deionized water through the tubes packed with Mn_2O_3 fibers and CTAB modified Mn_2O_3 fibers (penetration height h^2 verses time t). Fig.S2. Oil absorption properties of resin composites affected by the Mn₂O₃ loading. The optimal amount of Mn_2O_3 fibers was 4%, at which higher oil absorption properties could be reached. $\label{eq:solution} Fig.~S3.~N_2~adsorption-desorption~isotherms~and~BJH~pore~size~distributions~of~Mn_2O_3$ $\label{eq:solution} fibers.$ Fig.S4. Optical images of the oil absorption of resin composites (swelling properties). Fig. S5. Optical images of the toluene removal from the surface of water by a piece of resin composites (The toluene was dyed with Sudan II for observation).