Electronic Supplementary Information

Carbon dots isolated from chromatographic fractions for sensing applications

Lizhen Liu, ‡^{a,b} Feng Feng, ^{a,b*} Man Chin Paau, ^c Qin Hu, ^c Yang Liu, ‡^c Zezhong Chen, ^b Martin M. F. Choi^{c,1**}

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China. Fax: +86-352- 6100028; Tel: +86-352- 7157968; E-mail: feng-feng64@263.net

^bCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China.

^cPartner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China. Fax: +852-34117348; E-mail: mmfchoi@gmail.com

¹Present address: Acadia Divinity College, Acadia University, 15 University Avenue, Wolfville, Nova Scotia, B4P 2R6, Canada.

‡Exchange student on visit to Hong Kong Baptist University.

Measurement of quantum yield

The quantum yield (Φ_S) of the C-dots sample was determined by a comparative method. Quinine sulfate ($\Phi_R = 0.54$) in 0.10 M H₂SO₄ (refractive index, $\eta = 1.33$) was selected as the reference to determine the Φ_S of the C-dots sample in methanol ($\eta = 1.44$) and C-dots HPLC fractions in distilled water ($\eta = 1.33$) at different concentrations. All the absorbances of the solutions at the excitation wavelength (λ_{ex}) were recorded by a UV-vis absorption spectrophotometer (Varian, Palo Alto, CA, USA). Photoluminescence (PL) spectra of C-dots were measured by a Hitachi F-2500 spectrofluorometer (Tokyo, Japan). The λ_{ex} /integrated PL intensity areas under the PL curve in the wavelength range were 370/390–650 nm for C-dots sample and 350/370–650 nm for C-dots HPLC fractions. Graphs of integrated PL intensity against absorbance were plotted. The Φ_S of the C-dots sample was calculated as follows:

$$\Phi_{S} = \Phi_{R} \left(Grad_{S} / Grad_{R} \right) \left(\eta^{2}_{S} / \eta^{2}_{R} \right)$$

where the subscripts *S* and *R* refer to the sample C-dots and reference, respectively. *Grad* is the gradient from the plot of integrated PL intensity against absorbance, and η is the refractive index of the solvent. In order to minimise the self-absorption effect, the absorbance in the 10-mm pathlength fluorescence cuvette was kept under 0.10 at the λ_{ex} .^{1,2}

References

- Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang and Y. Liu, *Chem. Commun.*, 2012, 48, 380.
- 2 X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Da and W. Liu, Chem. Commun., 2012, 48, 7955.

Fig. S1. UV-vis absorption (blue line) and PL spectra (red line, λ_{ex} 300 nm) of the C-dots in methanol solution. Inset: the photographic images of the C-dots solution under daylight (right) and UV irradiation (365 nm, left).

Fig. S2. Plots of integrated PL intensity against absorbance of (A) C-dots and (B) quinine sulfate.

Fig. S3. PL spectra of C-dots at different λ_{ex} 250–500 nm.

Fig. S4. IR spectrum of C-dots.

Fig. S5. (A) XPS survey scan, (B) C1s, (C) O1s, (D) N1s, (E) S2p and (F) P2p XPS spectra of C-dots.

Table S1. Elemental analysis of the C-dots samples synthesised with different mole ratios of NAC/HAc (0.00–0.025) in the initial reagents.

Sample prepared from mole ratio of NAC/HAc	Element Content (%)					
	C	Н	Р	O (calculated)	N	S
0.00	61.14	3.94	2.81	32.11	_	_
0.0050	60.53	4.05	2.69	31.64	0.29	0.80
0.0070	60.36	4.09	2.57	31.47	0.35	1.16
0.010	60.24	4.14	2.41	31.40	0.44	1.37
0.015	60.09	4.19	2.29	31.29	0.53	1.61
0.025	59.84	4.25	2.15	31.18	0.64	1.94

Fig. S6. UV-vis absorption and PL spectra at different λ_{ex} of fractions 1–16.

Fig. S7. MALDI-TOF mass spectra of fractions 1–16.

Fig. S8. (A) PL intensity changes of the as-synthesised C-dots products and fractions 1 and 5 in the presence of 4.0 μ M Fe³⁺ and 1.0 μ M Hg²⁺. (B) PL intensity changes of the as-synthesised C-dots products and fractions 1 and 5 in the presence of 60 μ M Fe³⁺ and 20 μ M Hg²⁺. F_0 and F are the PL intensities of the as-synthesised C-dots products at $\lambda_{ex}/\lambda_{em}$ of 370/480 nm, fraction 1 at $\lambda_{ex}/\lambda_{em}$ of 350/436 nm and fraction 5 at $\lambda_{ex}/\lambda_{em}$ of 350/420 nm in the absence and presence of Fe³⁺ and Hg²⁺, respectively. Each data point is the average of three measurements. The error bars indicate the standard deviation of the measurements.