Supporting Information for

Roles of DMSO-type ruthenium complexes in disaggregation of prion neuropeptide PrP106-126

Dengsen Zhu,¹ Cong Zhao,¹ Xuesong Wang,¹ Wenji Wang,¹ Baohuai Wang,² Weihong Du^{1,*}

¹Department of Chemistry, Renmin University of China, Beijing, 100872, China ² College of Chemistry and Molecular Engineering, Peking University, 100871, China

Fig. S1 ¹H NMR spectra of complexes 1, 2, 3, and 4 in $H_2O/DMSO$ at pH 5.7, 298 K, respectively.

Fig. S2 UV absorption spectra of four Ru complexes. The complexes concentration was 50 μ M. (A) 1, (B) 2, (C) 3, and (D) 4.

Fig. S3 UV absorption spectra of ThT in the absence (black) and presence of complex 1 (red), 2 (blue), 3 (magenta), 4 (olive) and RuCl₃ (navy), after subtracting the absorption of metal complex. The concentrations of ThT and metal complex were 100 μ M both. A slight hyperchromic effect confirmed the interaction of ThT and the complex.

Fig. S4 Fluorescence intensity of ThT in the absence (black) and presence of Ru complex at concentrations of 20μ M (red), 50μ M (blue), 80μ M (magenta), and 100μ M (olive) for 1(A), 2(B), 3(C), 4 (D) and RuCl₃ (E) respectively. (F) Comparison of the fluorescence intensity of ThT with aggregated PrP106-126 (black), ThT alone (red), ThT with complex 1(blue), 2 (magenta), 3(olive), 4(navy) and RuCl₃ (violet) respectively at 100μ M.

Fig. S5 TEM images of PrP106-126 in presence of **1** (A), **2** (B), **3** (C), and **4** (D) respectively. The molar ratio of Ru complex to peptide was 0.2. The scale bar is 100 nm.

Fig. S6 TEM images of PrP106-126 in presence of complex **1** (A), **2** (B), **3** (C) and **4** (D) respectively. The molar ratio of Ru complex to peptide was 3.0. The scale bar is 500 nm.

Fig. S7 ¹H NMR spectra of PrP106-126 in $H_2O/DMSO$ at pH 5.7, 298 K. PrP106-126 alone (A), PrP106-126 in the presence of triple amounts of complexes **2** (B) and complex **2** alone (C).

Fig. S8 ¹H NMR spectra of PrP106-126 in $H_2O/DMSO$ at pH 5.7, 298 K. PrP106-126 alone (A), PrP106-126 in the presence of triple amounts of complexes **3** (B) and complex **3** alone (C).

,

Fig. S9 ¹H NMR spectra of PrP106-126 in d6/DMSO at pH 5.7, 298 K. PrP106-126 alone (A), PrP106-126 in the presence of triple amounts of complexes **4** (B) and complex **4** alone (C).

Fig. S10 Effects of ruthenium complexes on the cytotoxicity of determined through an MTT assay. Human SH-SY5Y neuroblastoma cells were treated with ruthenium complexes (10 μ M). *P<0.01 versus control group. The data were from the average of four repeated experiments.