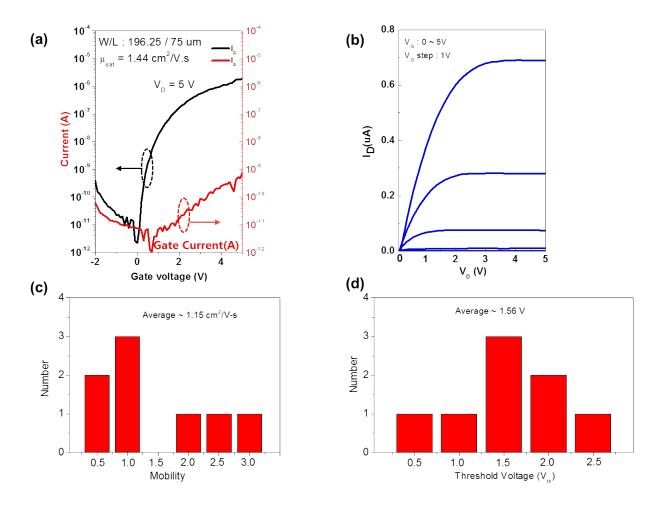
Supporting Information

1-Dimensional Fiber-based Field-Effect Transistors made by Lowtemperature Photochemically Activated Sol-Gel Metal-Oxide Materials for Electronic Textiles

Chang Jun Park^{a*}, Jae Sang Heo^{a*}, Kyung-Tae kim^a, Gyengmin Yi^a, Jingu Kang^a Jong S. Park^b, Yong-Hoon Kim^{c+}, and Sung Kyu Park^{a+}

yhkim76@skku.edu (Y.H.K)


^a School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, Korea

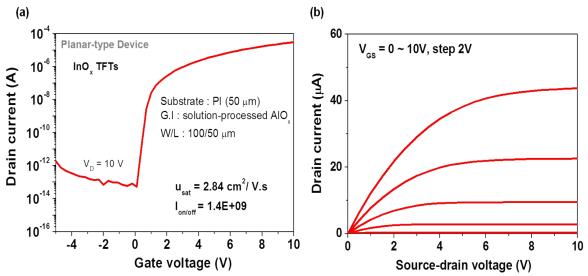
^b Department of Organic Material Science and Engineering, Pusan National University, Pusan, Korea.

^c School of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyukwan University, Suwon, Korea.

⁺ Corresponding authors. E-mail: skpark@cau.ac.kr (S.K.P)

Electrical characterization of InO_x F-FETa

Figure S1. Electrical characteristics of IGZO F-FETs. Transfer characteristics of (a) and (b) Output characteristics of IGZO F-FETs. Distribution of (c) mobility and (d) threshold volatges of 8 devices


Electrical characterization of planar-type InO_x thin-film transistors

Materials and methods

For planar-type devices, we fabricated spin-cast InO_x thin-film transistors (TFTs) on a 50 μ m-thick polyimide (PI) substrate. On the PI substrate, Cr/Au (5 nm/50 nm) gate electrode and AlO_x gate dielectric layers were deposited sequentially For active layer formation, InO_x film was formed by spin coating and photochemical activation in N_2 atmosphere for 2h using high-density ultraviolet (UV) treatment system and indium-zinc oxide source/drain electrodes were deposited by using RF- magnetron sputtering. The channel width and length of the TFT were 100 μ m and 50 μ m, respectively.

Electical performances

The fabricated InO_x TFTs on a planar PI substrate showed an average field-effect mobility of 2.84 cm²/V-s. Also, the planar-type device exhibited n-type behavior and clean pinch-off, as shown in Figure S1.

Figure S2. (a) Transfer and (b) output characteristics of InO_x TFTs fabricated on planar PI substrate.

The electrical measurement set-up for fiber-based F-FETs

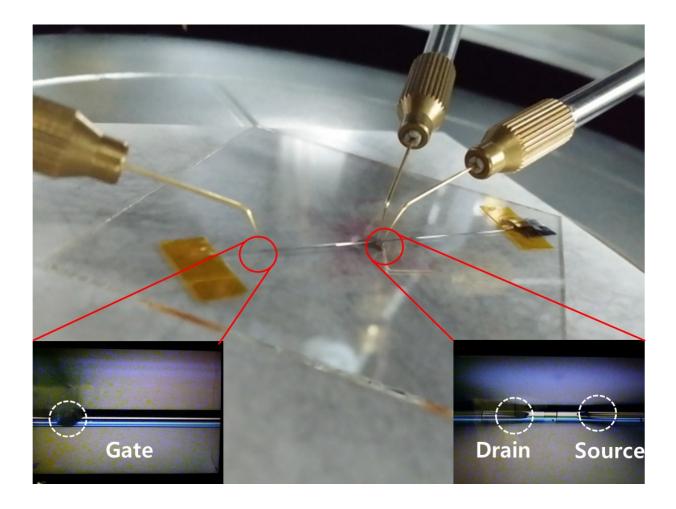


Figure S3. The electrical measurement set-up and probing for fiber-based F-FETs