Supporing Information

pH-Switchable Electroactive Composite Films of Carboxylated Multi-walled Carbon Nanotubes and Prussian Blue

Ying Tong, Yuanyuan Wang, Bowen Gao, Lei Su,* and Xueji Zhang*

Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

* Corresponding authors. E-mail address: sulei@ustb.edu.cn (L.S.), zhangxueji@ustb.edu.cn (X.J.Z.).

Fig. S1 a) UV-vis absorption spectra of the CMWCNT multilayers. Inset: photographs of the CMWCNTs dispersed in aqueous solution (item *i*) and the CMWCNT multilayer film (item *ii*). b) Plot of the linearity between the absorbance values at 260 nm versus the bilayer number. c) SEM image of the CMWCNT multilayer film.

Fig. S2 a) UV-vis absorption spectra of the CMWCNTs@PB composite film (solid line) and the CMWCNTs film (dashed line). Inset: photographs of the CMWCNTs film (item *i*) and the CMWCNTs@PB composite film (item *ii*). b) SEM image of the CMWCNTs@PB composite film.

Fig. S3 Cyclic voltammetric curves of the PB modified ITO electrode prepared via an electrochemical PB deposition method at different pH values at a scan rate of 20 mV s⁻¹.

Fig. S4 Screen pictures captured from the videotapes of the PB modified ITO electrode undergoing cyclic potential sweeps between 0.6 and 0.1 V vs Ag/AgCl at a scan rate of 20 mV s⁻¹. a) pH 2, 0.1 V; b) pH 2, 0.6 V; c) pH 6, 0.1 V; d) pH 6, 0.6 V. The light grey was the color of the CMWCNT multilayer-coated ITO glass. From these pictures, it can be seen that the PB modified electrode has the common electrochromic behaviors regardless of pH.

Fig. S5 Electrochemical impedance spectra of the PB modified electrode at different pH.