Electronic Supplementary Information

for

Hypervalent Diorganoantimony(III) Fluorides *via* Diorganoantimony(III) Cations – A General Method of Synthesis

Ana Maria Preda,[†] Ciprian I. Raţ,[†] Cristian Silvestru,^{*,†} Heinrich Lang,[§] Tobias Rüffer,[§] and Michael Mehring^{*,‡}

 [†] Departamentul de Chimie, Centrul de Chimie Supramoleculară Organică și Organometalică (CCSOOM), Facultatea de Chimie și Inginerie Chimică, Universitatea Babeş-Bolyai, 400028 Cluj-Napoca, Romania.
 Fax: (+40) 264-590818, Tel: (+40) 264-593833; E-mail: <u>cristian.silvestru@ubbcluj.ro</u>

[§] Institut für Chemie, Technische Universität Chemnitz, Anorganische Chemie, D-09111 Chemnitz, Germany.

[‡] Institut für Chemie, Technische Universität Chemnitz, Koordinationschemie, D-09111 Chemnitz, Germany.

Scheme S1. Numbering scheme for NMR assignments.

Figure S1. Structure of 1.2CH₂Cl₂ showing the atom numbering scheme in the (Λ_{Sb})-cation. Displacement ellipsoids are depicted at the 30% probability level. Solvent molecules are omitted for clarity.

Figure S2. Structure of (Λ_{Sb})-cation (*left*) and (Δ_{Sb})-cation (*right*) in the crystal of 1 · 2CH₂Cl₂.

Figure S3. View of the chain polymer in the crystal of $1 \cdot 2CH_2Cl_2$ based on $F \cdots H_{imine}$ contacts between (Λ_{Sb})-cations and anions (only hydrogen atoms involved in cation-anion contacts are shown) [symmetry equivalent atoms (-x, -0.5+y, 0.5-z), (-x, 1-y, 1-z) and (x, 0.5-y, -0.5+z) are given by "a", "b" and "c", respectively].

-	cation-anion distance	$F(5b) \cdots H(26)_{imine}$	2.48 Å	$\sum r_{vdW}(F,H) 2.55 \text{ Å}$
		$F(6c) \cdots H(7)_{imine}$	2.38 Å	

Figure S4. View of the layer in the crystal of $1 \cdot 2CH_2Cl_2$ based on $Cl \cdots H$ contacts establish by the solvent molecules between parallel chains built from (Λ_{Sb})- and (Δ_{Sb})- cations, respectively, and anions (only hydrogen atoms involved in chlorine-hydrogen and cation-anion contacts are shown) [symmetry equivalent atoms (*x*, 0.5–*y*, –0.5+*z*) are given by "c"].

-	cation-solvent contacts	$Cl(3c)\cdots H(14)_{methine}$	2.85 Å	$\sum r_{vdW}(Cl,H)$ 3.01 Å
		$Cl(4c)\cdots H(4c)_{arvl}$	2.87 Å	_ 、 ,

- no further contacts between parallel layers.

Figure S5. Structure of $3 \cdot 2$ CHCl₃ showing the atom numbering scheme in the (Λ_{Sb})-cation. Displacement ellipsoids are depicted at the 25% probability level. Solvent molecules are omitted for clarity.

Figure S6. Structure of (Λ_{Sb}) -cation (*left*) and (Δ_{Sb}) -cation (*right*) in the crystal of **3**·2CHCl₃.

Figure S7. View of the dinuclear association of (Λ_{Sb}) - and (Δ_{Sb}) -cations based on C–H_{methyl}··· π (Ar_{centroid}) contacts in the crystal of **3**·2CHCl₃ (only hydrogen atoms involved in cation-cation contacts are shown) [symmetry equivalent atoms (*1*–*x*, –*y*, *1*–*z*) are given by "prime"].

- cation-cation distance

C(16)-H(16B)_{methyl}···Ar_{centroid} {C(24')-C(29')} 2.85 Å ($\gamma = 3.8^{\circ}$)

Figure S8. View of the chain polymer built from dimers of cations connected through anions and solvent molecules in the crystal of $3 \cdot 2$ CHCl₃ (only hydrogen atoms involved in cation-anion, cation-solvent and anion-solvent contacts are shown) [symmetry equivalent atoms (-l+x, y, z), (-x, -y, l-z) and (-l+x, y, z) are given by "a", "prime a" and "b", respectively].

- cation-anion distance F(4)...
- anion-solvent distance
- cation-solvent distance

 $\begin{array}{lll} F(4) \cdots H(26)_{aryl} & 2.46 \ \text{\AA} \\ F(1) \cdots H(34b)_{solvent} & 2.44 \ \text{\AA} \\ F(6) \cdots H(33)_{solvent} & 2.49 \ \text{\AA} \\ Cl(3) \cdots H(16Ca)_{methyl} & 2.94 \ \text{\AA} \\ Cl(5b) \cdots H(28'a)_{aryl} & 2.97 \ \text{\AA} \end{array}$

 $\sum r_{vdW}(F,H) 2.55 \text{ Å}$

 $\sum r_{vdW}$ (Cl,H) 3.01 Å

Figure S9. View along axis *a* of the chain polymer built from dimers of cations connected through anions and solvent molecules in the crystal of $3 \cdot 2$ CHCl₃.

- no further contacts between parallel chains.

$[2-(2',6'-{}^{i}Pr_{2}C_{6}H_{3}N=CH)C_{6}H_{4}]_{2}SbF(5)$

Figure S10. Structure of (C_{sb}) -5, showing the atom numbering scheme. Displacement ellipsoids are depicted at the 25% probability level.

Figure S11. Molecular structure of (C_{sb}) -5 isomer (*left*) and (A_{sb}) -5 isomer (*right*) in the crystal of 5, showing the intramolecular F···H and C–H_{methine}··· π (Ar_{centroid}) contacts (only imine hydrogen atoms and hydrogen atoms involved in intramolecular contacts are shown).

intramolecular distance $F(1) \cdots H(6)_{aryl}$ 2.40 Å $\sum r_{vdW}(F,H)$ 2.55 Å $C(17)-H(17)_{methine} \cdots Ar_{centroid} \{C(20)-C(25)\}$ 2.77 Å (γ = 22.1°)

Figure S12. View of a ribbon-like polymer of (C_{Sb})-5 isomers based on C–H… π (Ar_{centroid}) contacts in the crystal of 5 (only hydrogen atoms involved in C–H… π contacts are shown) [symmetry equivalent atoms (*x*, *y*, *1*+*z*), (*x*, *y*, *-1*+*z*), (*1*–*x*, –*y*, 0.5+*z*), (*1*–*x*, –*y*, -0.5+*z*) and (*1*–*x*, –*y*, -1.5+*z*) are given by "a", "b", "c", "d" and "e", respectively].

- intermolecular distance $C(11a)-H(11a)_{aryl}\cdots Ar_{centroid} \{C(20)-C(25)\} = 2.96 \text{ Å} (\gamma = 19.4^{\circ}) \\ C(4)-H(4)_{aryl}\cdots Ar_{centroid} \{C(8c)-C(13c)\} = 2.82 \text{ Å} (\gamma = 9.4^{\circ})$

Figure S13. View along axis c of the ribbon-like polymer of (C_{Sb}) -5 isomers in the crystal of 5.

Figure S14. View along axis *c* showing the F···H contacts between parallel ribbon-like polymers of (C_{Sb}) -**5** isomers (the central one) and four neighboring polymers of (A_{Sb}) -**5** isomers in the crystal of **5** [symmetry equivalent atoms (-0.5+x, 0.5-y, z) are given by "f"].

- inter-chain distance $F(1)\cdots H(22f)_{aryl}$ 2.54 Å $\sum r_{vdW}(F,H)$ 2.55 Å

Figure S15. Structure of (C_{sb}) -6, showing the atom numbering scheme. Displacement ellipsoids are depicted at the 25% probability level.

Figure S16. Molecular structure of (C_{sb}) -6 isomer (*left*) and (A_{sb}) -6 isomer (*right*) in the crystal of 6, showing the intramolecular fluorine-hydrogen contact (only imine hydrogen atom and the hydrogen atom involved in the intramolecular contacts are shown).

- intramolecular distance $F(1) \cdots H(6)_{aryl} 2.48 \text{ Å}$ $\sum r_{vdW}(F,H) 2.55 \text{ Å}$

Figure S17. View of the chain polymer of alternating (C_{Sb})-6 and (A_{Sb})-6 isomers based on F···H_{imine} contacts in the crystal of 6 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (x, 1-y, 0.5+z), (x, 1-y, -0.5+z) and (x, y, -1+z) are given by "a", "b" and "c", respectively].

- intermolecular distance $F(1) \cdots H(7b)_{imine} 2.31 \text{ Å}$ $\sum r_{vdW}(F,H) 2.55 \text{ Å}$

Figure S18. View along axis *c* of the chain polymer of alternating (C_{Sb})-6 and (A_{Sb})-6 isomers based on F····H_{imine} contacts in the crystal of 6.

Figure S19. View along axis *c* of the 3D architecture based on C–H··· π (Ar_{centroid}) contacts between parallel chain polymers in the crystal of **6** [symmetry equivalent atoms (0.5+x, 1.5-y, -0.5+z), (-0.5+x, 0.5+y, -1+z) and (-0.5+x, 0.5-y, -1.5+z) are given by "d", "e" and "f", respectively].

-	inter-chain distance	$C(23)-H(23)_{aryl}\cdots Ar_{centroid} \{C(1d)-C(6d)\}$	2.96 Å ($\gamma = 22.0^{\circ}$)
		$C(4e)-H(4e)_{aryl}\cdots Ar_{centroid} \{C(8f)-C(13f)\}$	$3.07 \text{ Å} (\gamma = 14.8^{\circ})$

$[2-(Me_2NCH_2)C_6H_4]_2SbF(7)$

Figure S20. Structure of $(A_{Sb})(pS_{N1},pS_{N2})$ -7, showing the atom numbering scheme. Displacement ellipsoids are depicted at the 25% probability level.

Figure S21. Molecular structure of $(C_{Sb})(pR_{N1},pR_{N2})$ -7 isomer (*left*) and $(A_{Sb})(pS_{N1},pS_{N2})$ -7 isomer (*right*) in the crystal of 7, showing the intramolecular fluorine-hydrogen contact (only the hydrogen atom involved in the intramolecular contact is shown).

- intramolecular distance $F(1) \cdots H(6)_{aryl} 2.48 \text{ Å}$ $\sum r_{vdW}(F,H) 2.55 \text{ Å}$

Figure S22. View of the chain polymer of $(A_{Sb})(pS_{N1},pS_{N2})$ -7 isomers based on F···H_{aryl} contacts in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (*x*, *1*+*y*, *z*) and (*x*, *-1*+*y*, *z*) are given by "a" and "b", respectively].

- intermolecular distance $F(1) \cdots H(3a)_{aryl} 2.49 \text{ Å}$ $\sum r_{vdW}(F,H) 2.55 \text{ Å}$

Figure S23. View of a pair of chain polymers of $(A_{Sb})(pS_{N1},pS_{N2})$ -7 isomers with inter-chain C–H··· π (Ar_{centroid}) contacts in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (0.5–x, -0.5+y, 0.5–z) and (0.5–x, 0.5+y, 0.5–z) are given by "c" and "d", respectively].

- inter-chain distance $C(14)-H(14)_{aryl}\cdots Ar_{centroid} \{C(10c)-C(15c)\} = 3.09 \text{ Å} (\gamma = 13.3^{\circ})$

- no further contacts between parallel pair of chains built from $(C_{Sb})(pR_{N1},pR_{N2})$ -7 and $(A_{Sb})(pS_{N1},pS_{N2})$ -7 isomers, respectively, developed along axis b

Figure S24. Structure of $(A_{Sb})(pR_{N1})$ -8, showing the atom numbering scheme. Displacement ellipsoids are depicted at the 25% probability level.

Figure S25. Molecular structure of $(C_{Sb})(pS_{N1})$ -**8** isomer (*left*) and $(A_{Sb})(pR_{N1})$ -**8** isomer (*right*) in the crystal of **8**, showing the intramolecular fluorine-hydrogen contact (only the hydrogen atom involved in the intramolecular contact is shown).

- intramolecular distance $F(1) \cdots H(6)_{aryl} 2.53 \text{ Å}$ $\sum r_{vdW}(F,H) 2.55 \text{ Å}$

Figure S26. View of the dimer association of $(C_{Sb})(pS_{N1})$ -**8** and $(A_{Sb})(pR_{N1})$ -**8** isomers based on C-H_{methylene}... π (Ar_{centroid}) contacts in the crystal of **8** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (*1–x, –y, 2–z*) are given by "prime"].

- intermolecular distance C(7)-H(7B)_{methylene}···Ar_{centroid}{C(10')-C(15')} 2.99 Å ($\gamma = 17.7^{\circ}$)

Figure S27. View along axis *a* of a fragment of the layer of dimers based on C–H_{aryl}··· π (Ar_{centroid}) contacts in the crystal of **8** (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms (0.5–*x*, –0.5+*y*, 1.5–*z*) are given by "prime a"].

- intermolecular distance $C(11)-H(11)_{aryl} \cdots Ar_{centroid} \{C(10'a)-C(15'a)\}$ 3.02 Å ($\gamma = 13.7^{\circ}$)

Figure S28. View along axis *b* of a fragment of the layer of dimers based on C–H_{aryl}··· π (Ar_{centroid}) contacts in the crystal of **8** (only hydrogen atoms involved in intermolecular contacts are shown).

- no further contacts between parallel layers

	$1 \cdot 2 CH_2 Cl_2$	3·2CHCl ₃	
chemical formula	$C_{40}H_{48}Cl_4F_6N_2PSb$	$C_{34}H_{34}Cl_6F_6N_2PSb$	
fw (g mol ⁻¹)	965.32	950.05	
cryst size [mm]	0.04x0.10x0.12	0.10x0.18x0.22	
cryst syst	monoclinic	triclinic	
space group	$P2_{1}/c$	<i>P</i> -1	
<i>a</i> (Å)	10.3364(4)	12.2715(12)	
<i>b</i> (Å)	24.8372(7)	12.4401(9)	
<i>c</i> (Å)	16.7958(5)	15.1691(10)	
α (deg)	90	80.778(6)	
β (deg)	98.284(3)	71.653(8)	
γ (deg)	90	70.246(8)	
$V(Å^3)$	4267.0(2)	2064.9(3)	
Ζ	4	2	
ρ_{calcd} (g cm ⁻³)	1.503	1.528	
μ (MoK α) (mm ⁻¹)	0.992		
μ (CuK α) (mm ⁻¹)		9.708	
Absorption correction	Multi-scan ¹	Multi-scan ¹	
<i>F</i> (000)	1960	948	
<i>T</i> (K)	110	293	
$\theta \min / \max (\deg)$	2.9 / 25.0	3.1 / 62.1	
Reflns collected	19369	11151	
Reflns independent	7483	6479	
Reflns observed	4640	5226	
R _{int}	0.052	0.070	
No. parameters	516	589	
Goodness-of-fit on F^2	0.84	0.97	
final <i>R</i> indices $[I > 2\sigma(I)]$			
R_I	0.0375	0.0611	
wR_2	0.0742 0.1489		
R indices (all data)			
R_I	0.0721 0.0698		
wR_2	0.0784	0.1521	
$\Delta \rho_{\min}$ and $\Delta \rho_{\max}$ (e Å ⁻³)	-0.56 and 0.82	-0.80 and 0.88	

Table S1. Crystallographic Data and Details of Data Collection andStructure Refinement Parameters for Compounds 1·2CH2Cl2 and 3·2CHCl3

(1) Sheldrick, G. M. *SADABS, Program for area detector adsorption correction*; University of Göttingen: Göttingen, Germany, 1996.

	5	6	7	8
chemical formula	$C_{38}H_{44}FN_2Sb$	C ₂₅ H ₂₇ FNSb	$C_{18}H_{24}FN_2Sb$	C ₁₅ H ₁₇ FNSb
fw (g mol ^{-1})	669.50	482.23	409.14	352.05
cryst size [mm]	0.26x0.29x0.32	0.25x0.29x0.32	0.22x0.26x0.30	0.29x0.29x0.45
cryst syst	orthorhombic	monoclinic	monoclinic	monoclinic
space group	$Pna2_1$	Cc	$P2_{1}/n$	$P2_{1}/n$
<i>a</i> (Å)	14.847(11)	15.136(2)	9.1371(8)	11.3139(8)
<i>b</i> (Å)	21.755(16)	10.038(2)	8.0760(7)	8.1198(6)
<i>c</i> (Å)	10.693(8)	15.178(3)	24.949(2)	15.8500(12)
α (deg)	90	90	90	90
β (deg)	90	100.706(4)	95.549(2)	101.487(1)
γ (deg)	90	90	90	90
$V(Å^3)$	3454(4)	2265.9(7)	1832.4(3)	1426.92(18)
Ζ	4	4	4	4
$\rho_{\rm calcd} ({ m g \ cm^{-3}})$	1.288	1.414	1.483	1.639
μ (MoK α) (mm ⁻¹)	0.831	1.235	1.513	1.927
Absorption correction	Multi-scan ¹	Multi-scan ¹	Multi-scan ¹	Multi-scan ¹
<i>F</i> (000)	1384	976	824	696
<i>T</i> (K)	297	297	297	297
$\theta \min / \max (\deg)$	1.7 / 25.0	2.5 / 25.0	1.6 / 25.0	2.0 / 25.0
Reflns collected	21151	10576	16818	13223
Reflns independent	6049	3944	3223	2516
Reflns observed	5253	3879	2982	2387
R _{int}	0.050	0.023	0.034	0.026
No. parameters	387	257	203	165
Goodness-of-fit on F^2	1.08	1.08	1.25	1.15
final <i>R</i> indices $[I > 2\sigma(I)]$				
R_{I}	0.0476	0.0215	0.0630	0.0281
wR_2	0.1028	0.0499	0.1085	0.0633
<i>R</i> indices (all data)				
R_I	0.0577	0.0220	0.0698	0.0302
wR_2	0.1078	0.0501	0.1115	0.0645
Flack	0.017(15)	-0.006(18)	-	-
$\Delta \rho_{\min}$ and $\Delta \rho_{\max}$ (e Å ⁻³)	-0.80 and 1.09	-0.34 and 0.56	-0.55 and 0.84	-0.56 and 0.51

Table S2. Crystallographic Data and Details of Data Collection andStructure Refinement Parameters for Compounds 5-8

(1) Sheldrick, G. M. *SADABS, Program for area detector adsorption correction*; University of Göttingen: Göttingen, Germany, 1996.