Electronic Supplementary Information

for

Hypervalent Diorganoantimony(III) Fluorides via Diorganoantimony(III) Cations - A General Method of Synthesis

Ana Maria Preda, ${ }^{\dagger}$ Ciprian I. Raţ, ${ }^{\dagger}$ Cristian Silvestru,*, ${ }^{\dagger}$ Heinrich Lang, ${ }^{\S}$ Tobias Rüffer, ${ }^{\S}$ and Michael Mehring**

> ${ }^{\dagger}$ Departamentul de Chimie, Centrul de Chimie Supramoleculară Organică şi Organometalică (CCSOOM), Facultatea de Chimie şi Inginerie Chimică, Universitatea Babeş-Bolyai, 400028 ClujNapoca, Romania.
> Fax: (+40) 264-590818, Tel: (+40) 264-593833; E-mail: cristian.silvestru@ubbcluj.ro

§ Institut für Chemie, Technische Universität Chemnitz, Anorganische Chemie, D-09111 Chemnitz, Germany.
${ }^{\ddagger}$ Institut für Chemie, Technische Universität Chemnitz, Koordinationschemie, D-09111 Chemnitz, Germany.

R

R'

R"

Scheme S1. Numbering scheme for NMR assignments.

Figure S1. Structure of $\mathbf{1} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showing the atom numbering scheme in the ($\left.\Lambda_{\mathrm{sb}}\right)$-cation.
Displacement ellipsoids are depicted at the 30% probability level. Solvent molecules are omitted for clarity.

Figure S2. Structure of (Λ_{sb})-cation (left) and (Δ_{Sb})-cation (right) in the crystal of $\mathbf{1} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S3. View of the chain polymer in the crystal of $\mathbf{1} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ based on $\mathrm{F} \cdots \mathrm{H}_{\text {imine }}$ contacts between (Λ_{sb})-cations and anions (only hydrogen atoms involved in cation-anion contacts are shown) [symmetry equivalent atoms $(-x,-0.5+y, 0.5-z),(-x, 1-y, 1-z)$ and $(x, 0.5-y,-0.5+z)$ are given by "a", "b" and "c", respectively].

- cation-anion distance

$$
\begin{align*}
& \mathrm{F}(5 \mathrm{~b}) \cdots \mathrm{H}(26)_{\text {imine }} \\
& \mathrm{F}(6 \mathrm{c}) \cdots \mathrm{H}(7)_{\text {imine }}
\end{align*}
$$

$2.48 \AA$
$\sum r_{\mathrm{vdw}}(\mathrm{F}, \mathrm{H}) 2.55 \AA$

$$
\mathrm{F}(6 \mathrm{c}) \cdots \mathrm{H}(7)_{\text {imine }}
$$

Figure S4. View of the layer in the crystal of $\mathbf{1} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ based on $\mathrm{Cl} \cdots \mathrm{H}$ contacts establish by the solvent molecules between parallel chains built from $\left(\Lambda_{\mathrm{Sb}}\right)$ - and $\left(\Delta_{\mathrm{Sb}}\right)$ - cations, respectively, and anions (only hydrogen atoms involved in chlorine-hydrogen and cation-anion contacts are shown) [symmetry equivalent atoms ($x, 0.5-y,-0.5+z$) are given by "c"].

- cation-solvent contacts

$$
\begin{array}{ll}
\mathrm{Cl}(3 \mathrm{c}) \cdots \mathrm{H}(14)_{\text {methine }} & 2.85 \AA \\
\mathrm{Cl}(4 \mathrm{c}) \cdots \mathrm{H}(4 \mathrm{c})_{\text {aryl }} & 2.87 \AA
\end{array}
$$

$$
\sum r_{\mathrm{vdW}}(\mathrm{Cl}, \mathrm{H}) 3.01 \AA
$$

- no further contacts between parallel layers.

$\left[\left\{\mathbf{2}-\left(\mathbf{2}^{\prime}, \mathbf{4}^{\prime}, \mathbf{6}^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{6} \mathbf{H}_{\mathbf{2}} \mathbf{N}=\mathbf{C H}\right) \mathrm{C}_{6} \mathbf{H}_{4}\right\}_{2} \mathbf{S b}^{+}{ }^{+}\left[\mathbf{P F}_{6}\right]^{-} \cdot \mathbf{2 C H C l} \mathbf{3}_{\mathbf{3}}\left(\mathbf{3} \cdot 2 \mathrm{CHCl}_{3}\right)\right.$

Figure S5. Structure of $\mathbf{3} \cdot 2 \mathrm{CHCl}_{3}$ showing the atom numbering scheme in the (Λ_{sb})-cation. Displacement ellipsoids are depicted at the 25% probability level. Solvent molecules are omitted for clarity.

Figure S6. Structure of $\left(\Lambda_{\mathrm{sb}}\right)$-cation (left) and $\left(\Delta_{\mathrm{sb}}\right)$-cation (right) in the crystal of $\mathbf{3} \cdot 2 \mathrm{CHCl}_{3}$.

Figure S7. View of the dinuclear association of (Λ_{sb})- and (Δ_{sb})-cations based on $\mathrm{C}-\mathrm{H}_{\text {methy }} \cdots \pi$ ($\mathrm{Ar}_{\text {centroid }}$) contacts in the crystal of $\mathbf{3} \cdot 2 \mathrm{CHCl}_{3}$ (only hydrogen atoms involved in cation-cation contacts are shown) [symmetry equivalent atoms ($1-x,-y, 1-z$) are given by "prime"].

- cation-cation distance

$$
\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})_{\text {methy }} \cdots \mathrm{Ar}_{\text {centroid }}\left\{\mathrm{C}\left(24^{\prime}\right)-\mathrm{C}\left(29^{\prime}\right)\right\} \quad 2.85 \AA\left(\gamma=3.8^{\circ}\right)
$$

Figure S8. View of the chain polymer built from dimers of cations connected through anions and solvent molecules in the crystal of $\mathbf{3} \cdot 2 \mathrm{CHCl}_{3}$ (only hydrogen atoms involved in cation-anion, cation-solvent and anion-solvent contacts are shown) [symmetry equivalent atoms $(-1+x, y, z),(-x,-y, 1-z)$ and $(-1+x, y, z)$ are given by "a", "prime a" and "b", respectively].

- cation-anion distance
- anion-solvent distance
$F(4) \cdots H(26)_{\text {aryl }}$
$\mathrm{F}(1) \cdots \mathrm{H}(34 \mathrm{~b})_{\text {solvent }}$
$2.46 \AA$
$\sum r_{\mathrm{vdW}}(\mathrm{F}, \mathrm{H}) 2.55 \AA$
$\mathrm{F}(6) \cdots \mathrm{H}(33)_{\text {solvent }}$
$2.44 \AA$
$2.49 \AA$
- cation-solvent distance

Figure S9. View along axis a of the chain polymer built from dimers of cations connected through anions and solvent molecules in the crystal of $\mathbf{3} \cdot 2 \mathrm{CHCl} \mathrm{l}_{3}$.

- no further contacts between parallel chains.

[2-(2', $\left.\left.\mathbf{6}^{\prime}-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right]_{2} \mathrm{SbF}$ (5)

Figure S10. Structure of $\left(C_{\mathrm{Sb}}\right)-5$, showing the atom numbering scheme. Displacement ellipsoids are depicted at the 25% probability level.

Figure S11. Molecular structure of $\left(C_{\mathrm{Sb}}\right)-\mathbf{5}$ isomer (left) and $\left(A_{\mathrm{Sb}}\right)-\mathbf{5}$ isomer (right) in the crystal of 5, showing the intramolecular $\mathrm{F} \cdots \mathrm{H}$ and $\mathrm{C}-\mathrm{H}_{\text {methine }} \cdots \pi$ ($\mathrm{Ar}_{\text {centroid }}$) contacts (only imine hydrogen atoms and hydrogen atoms involved in intramolecular contacts are shown).

- intramolecular distance

$$
\begin{aligned}
& \mathrm{F}(1) \cdots \mathrm{H}(6)_{\text {aryl }} \quad 2.40 \AA \\
& \mathrm{C}(17)-\mathrm{H}(17)_{\text {methine }} \cdots \mathrm{Ar}_{\text {centroid }}\{\mathrm{C}(20)-\mathrm{C}(25)\}
\end{aligned}
$$

$$
\sum r_{\mathrm{vdW}}(\mathrm{~F}, \mathrm{H}) 2.55 \AA
$$

$$
2.77 \AA\left(\gamma=22.1^{\circ}\right)
$$

Figure S12. View of a ribbon-like polymer of $\left(C_{\mathrm{Sb}}\right)-5$ isomers based on $\mathrm{C}-\mathrm{H} \cdots \pi\left(\mathrm{Ar}_{\text {centroid }}\right)$ contacts in the crystal of 5 (only hydrogen atoms involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts are shown) [symmetry equivalent atoms $(x, y, 1+z),(x, y,-1+z),(1-x,-y, 0.5+z),(1-x,-y,-0.5+z)$ and $(1-x,-y,-1.5+z)$ are given by "a", "b", "c", "d" and "e", respectively].

- intermolecular distance

$$
\begin{array}{ll}
\mathrm{C}(11 \mathrm{a})-\mathrm{H}(11 \mathrm{a})_{\text {aryy } 1} \cdots \mathrm{Ar}_{\text {centroid }}\{\mathrm{C}(20)-\mathrm{C}(25)\} & 2.96 \AA\left(\gamma=19.4^{\circ}\right) \\
\mathrm{C}(4)-\mathrm{H}(4)_{\text {ary } 1} \cdots \mathrm{Ar}_{\text {centroid }}\{\mathrm{C}(8 \mathrm{c})-\mathrm{C}(13 \mathrm{c})\} & 2.82 \AA\left(\gamma=9.4^{\circ}\right)
\end{array}
$$

Figure S13. View along axis c of the ribbon-like polymer of $\left(C_{\mathrm{Sb}}\right)-5$ isomers in the crystal of 5 .

Figure S14. View along axis c showing the $\mathrm{F} \cdots \mathrm{H}$ contacts between parallel ribbon-like polymers of $\left(C_{\mathrm{Sb}}\right)$ - $\mathbf{5}$ isomers (the central one) and four neighboring polymers of $\left(A_{\mathrm{Sb}}\right)-\mathbf{5}$ isomers in the crystal of $\mathbf{5}$ [symmetry equivalent atoms ($-0.5+x, 0.5-y, z$) are given by " f "].

- inter-chain distance
$\mathrm{F}(1) \cdots \mathrm{H}(22 \mathrm{f})_{\text {aryl }}$
$2.54 \AA$
$\sum r_{\mathrm{vdW}}(\mathrm{F}, \mathrm{H}) 2.55 \AA$

[2-(2', $\left.\left.\mathbf{6}^{\prime}-\mathrm{i}^{-} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}=\mathrm{CH}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{PhSbF}$ (6)

Figure S15. Structure of $\left(C_{\mathrm{Sb}}\right)-6$, showing the atom numbering scheme. Displacement ellipsoids are depicted at the 25% probability level.

Figure S16. Molecular structure of $\left(C_{\mathrm{Sb}}\right)-\mathbf{6}$ isomer (left) and $\left(A_{\mathrm{Sb}}\right)-\mathbf{6}$ isomer (right) in the crystal of $\mathbf{6}$, showing the intramolecular fluorine-hydrogen contact (only imine hydrogen atom and the hydrogen atom involved in the intramolecular contacts are shown).

- intramolecular distance
$\mathrm{F}(1) \cdots \mathrm{H}(6)_{\text {aryl }} 2.48 \AA$
$\sum r_{\mathrm{vdW}}(\mathrm{F}, \mathrm{H}) 2.55 \AA$

Figure S17. View of the chain polymer of alternating $\left(C_{\mathrm{Sb}}\right)-6$ and $\left(A_{\mathrm{Sb}}\right)-6$ isomers based on $\mathrm{F} \cdots \mathrm{H}_{\text {imine }}$ contacts in the crystal of $\mathbf{6}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms $(x, 1-y, 0.5+z),(x, 1-y,-0.5+z)$ and $(x, y,-1+z)$ are given by "a", "b" and "c", respectively].

- intermolecular distance

$$
\mathrm{F}(1) \cdots \mathrm{H}(7 \mathrm{~b})_{\text {imine }} 2.31 \AA
$$

$$
\sum r_{\mathrm{vdW}}(\mathrm{~F}, \mathrm{H}) 2.55 \AA
$$

Figure S18. View along axis c of the chain polymer of alternating $\left(C_{\mathrm{Sb}}\right)-6$ and $\left(A_{\mathrm{Sb}}\right)-6$ isomers based on $\mathrm{F} \cdots \mathrm{H}_{\mathrm{imine}}$ contacts in the crystal of $\mathbf{6}$.

Figure S19. View along axis c of the 3D architecture based on $\mathrm{C}-\mathrm{H} \cdots \pi\left(\mathrm{Ar}_{\text {centroid }}\right)$ contacts between parallel chain polymers in the crystal of $\mathbf{6}$ [symmetry equivalent atoms $(0.5+x, 1.5-y,-0.5+z),(-0.5+x$, $0.5+y,-1+z)$ and ($-0.5+x, 0.5-y,-1.5+z$) are given by " d ", " e " and " f ", respectively].

- inter-chain distance

$$
\begin{array}{ll}
\mathrm{C}(23)-\mathrm{H}(23)_{\text {ary }} \cdots \mathrm{Ar}_{\text {centroid }}\{\mathrm{C}(1 \mathrm{~d})-\mathrm{C}(6 \mathrm{~d})\} & 2.96 \AA\left(\gamma=22.0^{\circ}\right) \\
\mathrm{C}(4 \mathrm{e})-\mathrm{H}(4 \mathrm{e})_{\text {ary }} \cdots \mathrm{Ar}_{\text {centroid }}\{\mathrm{C}(8 \mathrm{f})-\mathrm{C}(13 \mathrm{f})\} & 3.07 \AA\left(\gamma=14.8^{\circ}\right)
\end{array}
$$

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathbf{H}_{4}\right]_{2} \mathbf{S b F}$ (7)

Figure S20. Structure of $\left(A_{\mathrm{Sb}}\right)\left(p S_{\mathrm{N} 1}, p S_{\mathrm{N} 2}\right)-7$, showing the atom numbering scheme. Displacement ellipsoids are depicted at the 25% probability level.

Figure S21. Molecular structure of $\left(C_{\mathrm{Sb}}\right)\left(p R_{\mathrm{N} 1}, p R_{\mathrm{N} 2}\right)$-7 isomer (left) and $\left(A_{\mathrm{Sb}}\right)\left(p S_{\mathrm{N} 1}, p S_{\mathrm{N} 2}\right)$-7 isomer (right) in the crystal of 7, showing the intramolecular fluorine-hydrogen contact (only the hydrogen atom involved in the intramolecular contact is shown).

- intramolecular distance $\quad \mathrm{F}(1) \cdots \mathrm{H}(6)_{\text {aryl }} 2.48 \AA \quad \sum r_{\mathrm{vdW}}(\mathrm{F}, \mathrm{H}) 2.55 \AA$

Figure S22. View of the chain polymer of $\left(A_{\mathrm{Sb}}\right)\left(p S_{\mathrm{N} 1}, p S_{\mathrm{N} 2}\right)-7$ isomers based on $\mathrm{F} \cdots \mathrm{H}_{\text {aryl }}$ contacts in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms $(x, 1+y, z)$ and $(x,-1+y, z)$ are given by "a" and "b", respectively].

- intermolecular distance

$$
F(1) \cdots H(3 a)_{\text {aryl }} 2.49 \AA
$$

$\sum r_{\mathrm{vdW}}(\mathrm{F}, \mathrm{H}) 2.55 \AA$

Figure S23. View of a pair of chain polymers of $\left(A_{\mathrm{Sb}}\right)\left(p S_{\mathrm{N} 1}, p S_{\mathrm{N} 2}\right)-7$ isomers with inter-chain $\mathrm{C}-\mathrm{H} \cdots \pi$ ($\mathrm{Ar}_{\text {centroid }}$) contacts in the crystal of 7 (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms ($0.5-x,-0.5+y, 0.5-z$) and $(0.5-x, 0.5+y, 0.5-z)$ are given by "c" and "d", respectively].

- inter-chain distance $\quad \mathrm{C}(14)-\mathrm{H}(14)_{\text {aryl }} \cdots \mathrm{Ar}_{\text {centroid }}\{\mathrm{C}(10 \mathrm{c})-\mathrm{C}(15 \mathrm{c})\} \quad 3.09 \AA\left(\gamma=13.3^{\circ}\right)$
- no further contacts between parallel pair of chains built from $\left(C_{\mathrm{Sb}}\right)\left(p R_{\mathrm{N} 1}, p R_{\mathrm{N} 2}\right)-7$ and $\left(A_{\mathrm{Sb}}\right)\left(p S_{\mathrm{N} 1}, p S_{\mathrm{N} 2}\right)-7$ isomers, respectively, developed along axis b

[2-($\left.\left.\mathrm{Me}_{2} \mathrm{NCH}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{PhSbF}$ (8)

Figure S24. Structure of $\left(A_{\mathrm{Sb}}\right)\left(p R_{\mathrm{N} 1}\right)-\mathbf{8}$, showing the atom numbering scheme. Displacement ellipsoids are depicted at the 25% probability level.

Figure S25. Molecular structure of $\left(C_{\mathrm{Sb}}\right)\left(p S_{\mathrm{N} 1}\right)$-8 isomer (left) and $\left(A_{\mathrm{Sb}}\right)\left(p R_{\mathrm{N} 1}\right)$-8 isomer (right) in the crystal of 8, showing the intramolecular fluorine-hydrogen contact (only the hydrogen atom involved in the intramolecular contact is shown).

- intramolecular distance

$$
\mathrm{F}(1) \cdots \mathrm{H}(6)_{\text {aryl }} 2.53 \AA
$$

$$
\sum r_{\mathrm{vdW}}(\mathrm{~F}, \mathrm{H}) 2.55 \AA
$$

Figure S26. View of the dimer association of $\left(C_{\mathrm{Sb}}\right)\left(p S_{\mathrm{N} 1}\right)-\mathbf{8}$ and $\left(A_{\mathrm{Sb}}\right)\left(p R_{\mathrm{N} 1}\right)-\mathbf{8}$ isomers based on $\mathrm{C}-\mathrm{H}_{\text {methylene }} \cdots \pi\left(\mathrm{Ar}_{\text {centroid }}\right)$ contacts in the crystal of $\mathbf{8}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms ($1-x,-y, 2-z$) are given by "prime"].

- intermolecular distance

$$
\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})_{\text {methylene }} \cdots \mathrm{Ar}_{\text {centroid }}\left\{\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)\right\}
$$

$$
2.99 \AA\left(\gamma=17.7^{\circ}\right)
$$

Figure S27. View along axis a of a fragment of the layer of dimers based on $\mathrm{C}-\mathrm{H}_{\text {aryl }} \cdots \pi$ ($\mathrm{Ar}_{\text {centroid }}$) contacts in the crystal of $\mathbf{8}$ (only hydrogen atoms involved in intermolecular contacts are shown) [symmetry equivalent atoms ($0.5-x,-0.5+y, 1.5-z$) are given by "prime a"].

- intermolecular distance $\quad \mathrm{C}(11)-\mathrm{H}(11)_{\text {aryl }} \cdots \mathrm{Ar}_{\text {centroid }}\left\{\mathrm{C}\left(10^{\prime} \mathrm{a}\right)-\mathrm{C}\left(15^{\prime} \mathrm{a}\right)\right\} \quad 3.02 \AA\left(\gamma=13.7^{\circ}\right)$

Figure S28. View along axis b of a fragment of the layer of dimers based on $\mathrm{C}-\mathrm{H}_{\text {aryl }} \cdots \pi$ ($\mathrm{Ar}_{\text {centroid }}$) contacts in the crystal of $\mathbf{8}$ (only hydrogen atoms involved in intermolecular contacts are shown).

- no further contacts between parallel layers

Table S1. Crystallographic Data and Details of Data Collection and Structure Refinement Parameters for Compounds $\mathbf{1} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{3} \cdot 2 \mathrm{CHCl}_{3}$

	1.2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3. $2 \mathrm{CHCl}_{3}$
chemical formula	$\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{PSb}$	$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{Cl}_{6} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{PSb}$
fw ($\mathrm{g} \mathrm{mol}^{-1}$)	965.32	950.05
cryst size [mm]	$0.04 \times 0.10 \mathrm{x} 0.12$	0.10x0.18x0.22
cryst syst	monoclinic	triclinic
space group	$P 2{ }_{1} / \mathrm{c}$	$P-1$
$a(\AA)$	10.3364(4)	12.2715(12)
$b(\AA)$	24.8372(7)	12.4401(9)
$c(\AA)$	16.7958(5)	15.1691(10)
α (deg)	90	80.778(6)
β (deg)	98.284(3)	71.653(8)
γ (deg)	90	70.246(8)
$V\left(\AA^{3}\right)$	4267.0(2)	2064.9(3)
Z	4	2
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.503	1.528
$\mu(\operatorname{MoK} \alpha)\left(\mathrm{mm}^{-1}\right)$	0.992	
$\mu(\mathrm{CuK} \alpha)\left(\mathrm{mm}^{-1}\right)$		9.708
Absorption correction	Multi-scan ${ }^{1}$	Multi-scan ${ }^{1}$
$F(000)$	1960	948
$T(\mathrm{~K})$	110	293
θ min / max (deg)	2.9 / 25.0	$3.1 / 62.1$
Reflns collected	19369	11151
Reflns independent	7483	6479
Reflns observed	4640	5226
$R_{\text {int }}$	0.052	0.070
No. parameters	516	589
Goodness-of-fit on F^{2} final R indices $[I>2 \sigma(I)]$	0.84	0.97
R_{1}	0.0375	0.0611
$w R_{2}$	0.0742	0.1489
R indices (all data)		
R_{1}	0.0721	0.0698
$w R_{2}$	0.0784	0.1521
$\Delta \rho_{\text {min }}$ and $\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$	-0.56 and 0.82	-0.80 and 0.88

(1) Sheldrick, G. M. SADABS, Program for area detector adsorption correction; University of Göttingen: Göttingen, Germany, 1996.

Table S2. Crystallographic Data and Details of Data Collection and Structure Refinement Parameters for Compounds 5-8

	5	6	7	8
chemical formula	$\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{FN}_{2} \mathrm{Sb}$	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{FNSb}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{Sb}$	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{FNSb}$
fw ($\mathrm{g} \mathrm{mol}^{-1}$)	669.50	482.23	409.14	352.05
cryst size [mm]	$0.26 \times 0.29 \mathrm{x} 0.32$	0.25 x 0.29 x 0.32	0.22 x 0.26 x 0.30	0.29x0.29x0.45
cryst syst	orthorhombic	monoclinic	monoclinic	monoclinic
space group	Pna2 ${ }_{1}$	$C \mathrm{c}$	$P 21 / n$	$P 2{ }_{1} / n$
$a(\AA)$	14.847(11)	15.136(2)	9.1371(8)	11.3139(8)
$b(\AA)$	21.755(16)	10.038(2)	8.0760(7)	8.1198(6)
$c(\AA)$	10.693(8)	15.178(3)	24.949(2)	15.8500(12)
α (deg)	90	90	90	90
β (deg)	90	100.706(4)	95.549(2)	101.487(1)
γ (deg)	90	90	90	90
$V\left(\AA^{3}\right)$	3454(4)	2265.9(7)	1832.4(3)	1426.92(18)
Z	4	4	4	4
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.288	1.414	1.483	1.639
$\mu(\operatorname{MoK} \alpha)\left(\mathrm{mm}^{-1}\right)$	0.831	1.235	1.513	1.927
Absorption correction	Multi-scan ${ }^{1}$	Multi-scan ${ }^{1}$	Multi-scan ${ }^{1}$	Multi-scan ${ }^{1}$
$F(000)$	1384	976	824	696
T (K)	297	297	297	297
θ min / max (deg)	1.7 / 25.0	2.5 / 25.0	1.6 / 25.0	2.0 / 25.0
Reflns collected	21151	10576	16818	13223
Reflns independent	6049	3944	3223	2516
Reflns observed	5253	3879	2982	2387
$R_{\text {int }}$	0.050	0.023	0.034	0.026
No. parameters	387	257	203	165
Goodness-of-fit on F^{2} final R indices $[I>2 \sigma(I)]$	1.08	1.08	1.25	1.15
R_{1}	0.0476	0.0215	0.0630	0.0281
$w R_{2}$	0.1028	0.0499	0.1085	0.0633
R indices (all data)				
R_{1}	0.0577	0.0220	0.0698	0.0302
$w R_{2}$	0.1078	0.0501	0.1115	0.0645
Flack	0.017(15)	-0.006(18)	-	-
$\Delta \rho_{\text {min }}$ and $\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$	-0.80 and 1.09	-0.34 and 0.56	-0.55 and 0.84	-0.56 and 0.51

(1) Sheldrick, G. M. SADABS, Program for area detector adsorption correction; University of Göttingen: Göttingen, Germany, 1996.

