Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

Rational designing of first furoquinolinol based molecular systems for easy detection of Cu²⁺ with potential applications in the area of membrane sensing

Manoj Kumar,^{a,‡} Lokesh Kumar Kumawat,^{a,‡} Vinod Kumar Gupta^{a,b} and Anuj Sharma^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India

^bDepartment of Applied Chemistry, University of Johannesburg, Johannesburg, South-Africa

*Corresponding author Phone: +9113 3228 4751 Fax: +9113 3227 3560 e-mail: anujsharma.mcl@gmail.com, anujsfcy@iitr.ac.in

^{*t*}Contributed equally as co-first authors.

Title Page	S1
Content Page	S2
Analytical data	S3
Spectra, Figures, Tables	S4-S30

Analytical data

3-(4-bromophenyl)-2-((2-morpholinoethyl)amino)furo[3,2-c]quinolin-4-ol (FQ1).

Yellow solid (81%), mp (decomp.) = 258-259°C, IR (KBr, cm⁻¹): v_{max} = 3369, 2963, 2864, 2821, 1655, 1602, 1498. ¹H NMR (400 MHz, CDCl₃): δ_{H} = 2.47 (br s, 4H), 2.61 (br s, 2H), 3.48 (br s, 2H), 3.66 (br s, 4H), 5.26 (br s, 1H), 7.21–7.29 (m, 3H)*, 7.38 (td, 1H, *J* = 7.3 & 1.2 Hz), 7.54 (s, 4H), 7.82 (d, 1H, *J* = 7.8 Hz), 10.49 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ_{c} = 37.2, 48.5, 52.8, 62.2, 89.9, 103.3, 106.0, 115.1, 117.7, 120.0, 123.6, 125.9, 126.6, 128.5, 130.4, 141.0, 155.0, 155.4, 160.8. HRMS (ESI) m/z calcd. for C₂₃H₂₂BrN₃O₃ [M-H]⁺ : 466.0760, found: 466.0765.

3-(4-chlorophenyl)-2-(pentylamino)furo[3,2-c]quinolin-4-ol (FQ2).

Yellow solid (78%), mp = 218-220 °C, IR (KBr, cm⁻¹): v_{max} = 2827, 1661, 1606, 1500, 1416. 1H NMR (400 MHz, CDCl₃): δ_{H} = 0.87–0.94 (m, 3H), 1.36 (m, 4H), 1.64 (quint, 2H, *J* = 7.2 Hz), 3.39 (t, 2H, *J* = 7.1 Hz), 4.38 (br s, 1H), 7.14–7.26 (m, 2H)*, 7.32 (m, 2H), 7.39 (d, 2H, *J* = 8.5), 7.58 (dt, 2H, *J* = 8.5 & 1.8 Hz), 7.82 (d, 1H, *J* = 7.8 Hz), 11.17 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ_{c} = 14.0, 22.9, 29.2, 29.8, 42.6, 94.6, 107.9, 110.7, 122.4, 124.6, 128.2, 129.9, 130.4, 130.9, 131.3, 133.0, 145.7, 159.6, 160.1, 165.4. HRMS (ESI) m/z calcd. for C₂₂H₂₁ClN₂O₂[M+H]⁺: 379.1207, found: 379.1207.

* Solvent peak at 7.26 is overlapped with this peaks, hence higher integration is obtained. See ¹H NMR spectra of both compounds at page S4 and S7 of ESI.

Figure SS1: 3-(4-bromophenyl)-2-((2-morpholinoethyl)amino)furo[3,2-c]quinolin-4-ol (FQ1): ¹H NMR

Figure SS2: 3-(4-bromophenyl)-2-((2-morpholinoethyl)amino)furo[3,2-c]quinolin-4-ol (FQ1): ¹³C NMR

Figure SS3: 3-(4-bromophenyl)-2-((2-morpholinoethyl)amino)furo[3,2-c]quinolin-4-ol (FQ1): HRMS

Figure SS4: 3-(4-chlorophenyl)-2-(pentylamino)furo[3,2-c]quinolin-4-ol (FQ2): ¹H NMR

Figure SS5: 3-(4-chlorophenyl)-2-(pentylamino)furo[3,2-c]quinolin-4-ol (FQ2): ¹³C NMR

Figure SS6: 3-(4-chlorophenyl)-2-(pentylamino)furo[3,2-c]quinolin-4-ol (FQ2): HRMS

Figure SS7: UV-Vis Spectra of FQ1 (20 μ M in DMSO:MeOH = 1:9) in the presence of different ions (10 equiv.). The distinct behaviour of Cu²⁺ (equimolar) is apparent from figure.

Figure SS9: Fluorescence response of FQ1 (20μ M in DMSO:MeOH = 1: 9) toward 10 equiv. of different metal ions after excitation at 370 nm.

Figure SS10: Fluorescence response of FQ1 (20μ M in DMSO:MeOH = 1: 9) toward 10 equiv. different metal ions after excitation at 370 nm wavelength.

Figure SS11: Fluorescence responses of FQ1 (20μ M in DMSO:MeOH = 1:9) in the presence of different metal ions.

Figure SS12: Fluorescent titration of FQ1 (20 μ M in DMSO:MeOH = 1:9) against Cu²⁺ (0.1 equiv. to 2.5 equiv.) after excitation at 370 nm wavelength.

Figure SS 15: Examination of selectivity of FQ2 (20 μ M in DMSO:MeOH = 1:9) towards Cu²⁺ in the presence of interfering ions.

Figure SS16: Change in fluorescence response with time at 465 and 460 nm respectively for compounds FQ1and FQ2.

Figure SS17: Job's plot to determine binding stoichiometry of compounds FQ1 with Cu²⁺

Figure SS18: Job's plot to determine binding stoichiometry of compounds FQ2 with Cu²⁺

Figure SS19: HRMS of possible complex of compound FQ1 with Cu²⁺

Figure SS20: HRMS of possible complex of compound FQ2 with Cu²⁺

Figure SS21: Reversibility Studies

Figure SS22: NMR Titration (FQ1) in the presence of different conc. of Cu²⁺ (DMSO-d₆ was used as NMR solvent and TMS as internal standard).

Figure SS23: NMR Titration (FQ2) in the presence of different conc. of Cu²⁺ (DMSO-d₆ was used as NMR solvent and TMS as internal standard).

Table SS1: Comparison of reported FQs with some of the recently developed sensors for Cu²⁺

S.No.	Sensor/probe	Interaction	Association constant (K _a) M ⁻¹	LOD in M	pH range
1	FQs (This work)	Turn off (flur) Reversible	$\begin{array}{c} 2.11 \times 10^{4} \\ 1.87 \times 10^{4} \end{array}$	1.52 × 10 ⁻⁷ 2.13 × 10 ⁻⁷	5.5-11
2 ^{4h}	NH ₂ NH ₂	Turn off (flur) Irreversible	NM	0.5 × 10 ⁻⁷	5-7
34i	N _S ,N	Conc. dependent Turn off (flur)	6.82 × 10 ⁴	4.0 × 10 ⁻⁷	NM
4 ^{8a}	P-Qs	Turn on (flur) irreversible	NM	1.5 × 10 ⁻⁶	7-9
6 ^{4j}		Turn on (flur)	1.1×10^{10}	0.15 × 10 ⁻⁶	NM
7 ^{4k}	HO HO N O O O O O O O O O O O O O O O O	Turn off (flur)	NM	1.27 × 10 ⁻⁴	NM
886	S N OH	Turn off (flur)	5.0 × 10 ⁴	1.5 × 10 ⁻⁶	4-11

(flur = fluorescence, NM = Not Mentioned)

Comp.	Emission Aex/nm Aem/nm		Quantum Yield	Detection Limit (M)	Binding Constant (M ⁻¹)	R ²	I/I ₀	Response Time (Min.)
FQ1	370	465	0.3915	1.52 x 10 ⁻⁷	2.11 x 10 ⁴	0.984	0.027	2-3 min.
FQ1 +Cu ²⁺	370	459	0.0253					
FQ2	370	460	0.3856	2.13 x 10 ⁻⁷	1.87 x 10 ⁴	0.985	0.159	2-3 min.
FQ + Cu ²⁺	370	452	0.0597					

Table SS2: Photophysical properties of FQ1 and FQ2