Supporting Information

Facile fabrication of reduced graphene oxide covered ZnCo₂O₄ porous nanowire arrays hierarchical structure on Ni-foam as a high performance anode for lithium-ion battery

Yujue Wang,^a Yongzhi Zhang,^b Junke Ou,^c Qian Zhao,^d Mei Liao,^a and Dan Xiao*^{ad}

^aCollege of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China. Email: xiaodan@scu.edu.cn; Fax: +86-28-85412907; Tel: +86-28-85416218

^bInstitute of New Energy and Low-Carbon Technology, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China. Fax: +86-28-6213-8325; Tel: +86-28-6213-8375

^cSchool of Basic Medical Sciences & Nursing, Chengdu University, Shiling Town, Chengdu 610106, China. E-mail: ojk0001@163.com

^dCollege of Chemical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China. E-mail: xiaodan@scu.edu.cn; Fax: +86-28-85415029; Tel: +86-28-85416029

Fig. S1 TGA curves of ZNWG and ZNW.

Fig. S2 XPS spectra of ZNW: (a) survey spectrum and high resolution (b)

Zn 2p, (c) Co 2p, (d) O 1s spectra.

Fig. S3 Discharge-charge profile and cycling performance of pure GO acting as anode for LIB at a current density of 0.2 A g⁻¹.

Fig. S4 SEM images of ZNW (a, b) and ZNWG (c, d) on Ni-foam after

50 cycles at a current density of 0.5 A g^{-1} .

Electrode	a	b	с	d	e
Loading (mg cm ⁻²)	1.32	1.13	1.26	1.05	1.76
Flacture de					
Electrode	f	g	h-ZNWG	h-ZNW	h-ZP

Table. S1 Corresponding active material loadings for each electrode in

Table. S2 Electrochemical performances of the ZNWG electrode in this

Electrode material	Initial reversible capacity (mA h g ⁻¹)	Current density (A g ⁻¹)	Cycling performance	
ZNWG	1371	0.1	1208 mA h g ⁻¹ after 100 cycles	
(this work)	1170	0.5	1032 mA h g ⁻¹ after 100 cycles	
Porous ZnCo ₂ O ₄ Nanowires ¹	1092.9	0.1	1197.9 mA h g ⁻¹ after 20 cycles	
ZnO/ZnCo ₂ O ₄ submicron rod arrays ²	1071	0.045	~900 mA h g ⁻¹ after 30 cycles	
Electrospun porous ZnCo ₂ O ₄ nanotubes ³	~1100	0.5	1011 mA h g ⁻¹ after 30 cycles	
rGO/ZnCo ₂ O ₄ nanocomposite ⁴	1071.1	0.09	960.8 mA h g ⁻¹ after 100 cycles	
ZnCo ₂ O ₄ /NiO core/shell nanowire arrays ⁵	776	0.1	357 mA h g ⁻¹ after 50 cycles	
Wrinkled-Paper-like Co- ZnO@C ⁶	862	0.1	538 mA h g ⁻¹ after 50 cycles	

work compared with other works reported previously.

Table. S3 Relevant solution resistance (R_s), charge transfer resistance

((\mathbf{R}_{ct})	for	1 st	and	100 th	cycles,	R _{ct}	increase	of Z	NWG,	ZNW	and ZP
•						J)				,		

Electrode	ZNWG	ZNW	ZP
$R_{s}(\Omega)$	2.36	4.47	12.7
R _{ct} for 1 st cycle (Ω)	80.2	90.0	315
R _{ct} for 100 th cycle (Ω)	232	337	1472
R _{ct} increase (%)	289	374	467

electrode, respectively.

References

- 1. N. Du, Y. Xu, H. Zhang, J. Yu, C. Zhai and D. Yang, *Inorg. Chem.*, 2011, 50, 3320-3324.
- C. W. Lee, S. D. Seo, D. W. Kim, S. Park, K. Jin, D. W. Kim and K. S. Hong, *Nano Res.*, 2013, 6, 348-355.
- 3. W. Luo, X. Hu, Y. Sun and Y. Huang, J. Mater. Chem., 2012, 22, 8916-8921.
- 4. G. Gao, H. B. Wu, B. Dong, S. Ding and X. W. D. Lou, *Adv. Sci.*, 2015, 2.
- Z. Sun, W. Ai, J. Liu, X. Qi, Y. Wang, J. Zhu, H. Zhang and T. Yu, *Nanoscale*, 2014, 6, 6563-6568.
- 6. A. K. Giri, P. Pal, R. Ananthakumar, M. Jayachandran, S. Mahanty and A. B. Panda, *Cryst. Growth Des.*, 2014, 14, 3352-3359.