Electronic Supplementary Information (ESI)

Cobalt(III) complexes with tridentate hydrazone ligands: protonation state and hydrogen bonds competition

Višnja Vrdoljak, Gordana Pavlović, Tomica Hrenar, Mirta Rubčić, Patrizia Siega, Renata Dreos and Marina Cindrić

Contents:

DSC thermograms 2Fig. S1 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{1}$Fig. S2 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$Fig. S3 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{3} \cdot \mathrm{H}_{2} \mathrm{O}$Fig. S4 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{4}$Fig. S5 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{5} \cdot \mathrm{H}_{2} \mathrm{O}$Fig. S6 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{6} \cdot \mathrm{H}_{2} \mathrm{O}$
Powder X-ray diffraction patterns 4
Fig. S7 PXRD patterns for $\mathrm{H}_{2} \mathrm{~L}^{3} \cdot \mathrm{H}_{2} \mathrm{O}$
Fig. S8 PXRD patterns for $\mathrm{H}_{2} \mathrm{~L}^{5} \cdot \mathrm{H}_{2} \mathrm{O}$
Fig. S9 PXRD patterns for $\mathrm{H}_{2} \mathrm{~L}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$
Fig. S10 PXRD patterns for $\mathrm{H}_{2} \mathrm{~L}^{6} \cdot \mathrm{H}_{2} \mathrm{O}$
TG curves 6
Fig. S11 TG curves of $\mathbf{2 \cdot 0 . 7} \mathbf{C H}_{\mathbf{3}} \mathbf{O H}$ and $\mathbf{2}$.
Crystal and molecular structures 7
Fig. S12 Packing arrangement of the ligand $\mathrm{H}_{2} \mathrm{~L}^{3}$Fig. S13 Packing arrangement of the ligand $\mathrm{H}_{2} \mathrm{~L}^{5}$Fig. S14 Packing arrangement of the ligand $\mathrm{H}_{2} \mathrm{~L}^{6}$
Fig. S15 Arrangement of guest methanol molecules present in the channels of the crystal structure viewed alongthe a-axis.Fig. S16 Partial crystal structure of $\mathbf{2}$ showing formation of centrosymmetrical dimerFig S17 Crystal structure of $\mathbf{2}$ showing 3D hydrogen-bonded supramolecular networkFig. S18 Mercury-rendered ORTEP view of the molecular structure of complex 1
Fig. S19 Mercury-rendered ORTEP view of the molecular structure of complex $\mathbf{6} \cdot \mathbf{M e O H}$
Fig. S20 Fraction of crystal structure of complex 1
Fig. S21 Crystal packing of $\mathbf{6} \cdot \mathbf{M e O H}$
Selected bond lengths and angles 14
Table S1. Selected geometrical parameters for $\mathrm{H}_{2} \mathrm{~L}^{3}, \mathrm{H}_{2} \mathrm{~L}^{5}$ and $\mathrm{H}_{2} \mathrm{~L}^{6}$ ligandsTable S2. Geometry of hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions for $\mathrm{H}_{2} \mathrm{~L}^{3}, \mathrm{H}_{2} \mathrm{~L}^{5}$ and $\mathrm{H}_{2} \mathrm{~L}^{6}$ ligands
Table S3(a). Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2
Table S3(b). Selected bond lengths $[\AA]$ and angles $\left[^{\circ}\right]$ for $\mathbf{1}$ and $\mathbf{6} \cdot \mathbf{M e O H}$Table S4. Hydrogen bonds for $\mathbf{1 , 2}$ and $\mathbf{6} \cdot \mathbf{M e O H}\left[\AA\right.$ and ${ }^{\circ}$]
NMR spectroscopy19
Fig. S22- S27 ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{Co}(\mathrm{HL})(\mathrm{L})]$ in DMSO- d_{6}
Fig. S28 (a) ${ }^{1} \mathrm{H}$ NMR (ppm) of the signals of $\left[\mathrm{Co}\left(\mathrm{HL}^{5}\right)\left(\mathrm{L}^{5}\right)\right]$ at various $[\mathrm{NaOH}] /[$ complex] ratios;
(b) ${ }^{1} \mathrm{H}$ NMR (ppm) of the signals of $\left[\mathrm{Co}\left(\mathrm{HL}^{1}\right)\left(\mathrm{L}^{1}\right)\right]$ at various $[\mathrm{NaOH}] /[$ complex] ratios
Fig. S29 ${ }^{1} \mathrm{H}$ NMR spectrum of complex 1 in DMSO- d_{6} with a ratio $[\mathrm{NaOH}] /[$ complex $]=1.1$ recorded in dependence of time; (b) PC1 loadings obtained by principal component analysis of NMR spectra presented on Fig. 29a.

DSC thermograms

Fig. S1 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{1}$

Fig. S2 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Fig. S3 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{3} \cdot \mathrm{H}_{2} \mathrm{O}$

Fig. S4 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{4}$

Fig. S5 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{5} \cdot \mathrm{H}_{2} \mathrm{O}$

Fig. S6 DSC thermogram of $\mathrm{H}_{2} \mathrm{~L}^{6} \cdot \mathrm{H}_{2} \mathrm{O}$

Powder X-ray diffraction patterns

Fig. S7 PXRD patterns for $\mathrm{H}_{2} \mathrm{~L}^{3} \cdot \mathrm{H}_{2} \mathrm{O}$
(from top to bottom): of sample obtained when $\mathrm{H}_{2} \mathrm{~L}^{3} \cdot \mathrm{H}_{2} \mathrm{O}$ was heated from the ambient temperature up to $200{ }^{\circ} \mathrm{C}$ at $5{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$; of sample obtained when $\mathrm{H}_{2} \mathrm{~L}^{3} \cdot \mathrm{H}_{2} \mathrm{O}$ was heated from the ambient temperature up to $120{ }^{\circ} \mathrm{C}$ at $5{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$; of mechanochemically prepared $\mathrm{H}_{2} \mathrm{~L}^{3} \cdot \mathrm{H}_{2} \mathrm{O}$ ligand; and calculated from the deposited crystal structure (CSD code MOKRUA).

Fig. S8 PXRD patterns for $\mathrm{H}_{2} \mathrm{~L}^{5} \cdot \mathrm{H}_{2} \mathrm{O}$
(from top to bottom): of $\mathrm{H}_{2} \mathrm{~L}^{5}$ calculated from the X -ray single-crystal structure; of sample obtained when $\mathrm{H}_{2} \mathrm{~L}^{5} \cdot \mathrm{H}_{2} \mathrm{O}$ was heated from the ambient temperature up to $150{ }^{\circ} \mathrm{C}$ at $5{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$; of sample obtained when $\mathrm{H}_{2} \mathrm{~L}^{5} \cdot \mathrm{H}_{2} \mathrm{O}$ was heated from the ambient temperature up to $125^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$; of mechanochemically prepared $\mathrm{H}_{2} \mathrm{~L}^{5} \cdot \mathrm{H}_{2} \mathrm{O}$ ligand; and calculated from the deposited crystal structure (CSD code TEZMER).

Fig. S9 PXRD patterns for $\mathrm{H}_{2} \mathrm{~L}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$
(from top to bottom): of sample obtained when $\mathrm{H}_{2} \mathrm{~L}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was heated from the ambient temperature up to $150{ }^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$; of mechanochemically prepared $\mathrm{H}_{2} \mathrm{~L}^{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ligand; and calculated from the deposited crystal structure (CSD code ROGFEZ).

Fig. S10 PXRD patterns for $\mathrm{H}_{2} \mathrm{~L}^{6} \cdot \mathrm{H}_{2} \mathrm{O}$
(from top to bottom): of $\mathrm{H}_{2} \mathrm{~L}^{5}$ calculated from the X-ray single-crystal structure of sample obtained when $\mathrm{H}_{2} \mathrm{~L}^{6} \cdot \mathrm{H}_{2} \mathrm{O}$ was heated from the ambient temperature up to $120{ }^{\circ} \mathrm{C}$ at $5{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$; of mechanochemically prepared $\mathrm{H}_{2} \mathrm{~L}^{6} \cdot \mathrm{H}_{2} \mathrm{O}$; and calculated from the deposited crystal structure (CSD code MIQXUH).

TG curves

Fig. S11 TG curves (a) of the crystalline sample $\mathbf{2 \cdot 0 . 7} \mathbf{C H}_{3} \mathbf{O H}$; and (b) of guest free sample obtained upon standing at room temperature affording 2. Experiments were recorded with a heating rate of $5{ }^{\circ} \mathrm{C}$ min^{-1} in a dynamic atmosphere with a flow rate of $200 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$.

Crystal and molecular structures

Fig. S12 a) View of the complex hydrogen-bonded network observed for $\mathrm{H}_{2} \mathrm{~L}^{3}$ down the c-axis. The network is shaped by two types of intersecting hydrogen-bonded chains: b) the ones realized through O3$\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 1$ hydrogen bonds (shown as black dashed lines) that run along the b-axis ($C(8)$ motif), and c) those accomplished via $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 2$ hydrogen bonds (shown as green dashed lines) that grow along the c-axis $(C(7)$ motif). Hydrogen-bonded network shown in a) is stabilized and expanded into a 3D architecture via $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3$ and $\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B} \cdots \mathrm{O} 1$ interactions (shown as purple dashed lines), respectively. Intramolecular hydrogen bonds in a)-c) are illustrated by orange dashed lines.

$\mathrm{H}_{2} \mathrm{~L}^{5}$

c)

d)

Fig. S13 a) Centrosymmetric hydrogen-bonded dimers displaying a $R_{2}{ }^{2}(8)$ motif form via $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 1$ hydrogen bonds (shown as green dashed lines). The dimers associate through $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$ interactions (shown as purple dashed lines) into endless chains which run along the b-axis. View of the chains along the b - and a-axis are shown in b) and c), respectively. d) Chains further assemble into layers via C5H5 \cdots O3 interactions (shown as purple dashed lines) which are finally stacked through van der Waals interactions. In a)-d) intramolecular hydrogen bonds, $\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{N} 1$, are highlighted by orange dashed lines.

$\mathrm{H}_{2} \mathrm{~L}^{6}$

Molecular and crystal structure of 2

Fig. S15 Arrangement of guest methanol molecules present in the channels of the crystal structure viewed along the a-axis.

In the complex $\mathbf{2 \cdot 0 . 7} \mathbf{C H}_{\mathbf{3}} \mathbf{O H}$ the refinement of occupancy factors for the O 1 and C 1 methanol atoms gave value of 0.7 . Due to that, the performance of data collection at $150(2) \mathrm{K}$ is undertaken in order to confirm the presence of residual density in the crystal voids and it is also interpreted, but more reliably, as the 0.7 MeOH molecule per complex molecule. The final refinement procedure has been performed by PLATON SQUEEZE instruction at 296(2) K data.
Revealed by PARST and MERCURY programs the shortest intermolecular contacts between the methanol O1 atom and the complex molecule are formed with the methyl C215 atom and the fivemembered hydrazone chelate ring O 11 atom with the metrical values of $\mathrm{O} 1 \cdots \mathrm{O} 11^{\mathrm{i}} 3.69(2) \AA$ ($\mathrm{i}=-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+2$) for 296(2) K data and 3.12(2) \AA for $150(2) \mathrm{K}$ data and $\mathrm{O} 1 \cdots \mathrm{C} 215^{\text {ii }} 3.44(2) \AA$ (ii= $\mathrm{x}-1,+\mathrm{y},+\mathrm{z}$) for 296(2) K data and 3.19(2) \AA for $150(2) \mathrm{K}$ data. The $\mathrm{O} \cdots \mathrm{O}$ intermolecular distance of $3.69(2) \AA$ is approx. $0.7 \AA$ longer than the sum of van der Waals radii for an oxygen atom and its hardly be recognized as the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ type of hydrogen bonding. Similarly, the $\mathrm{O} 1 \cdots \mathrm{C} 215$ contact at 296(2) K can be regarded as a very weak hydrogen bond of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type due to weak acidity of $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H group.
It seems that all these contacts can be regarded, despite the geometrical criteria which are at the limiting values of the range, as supportive (especially $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$) as it is revealed by thermogravimetric analysis of the complex and capable to maintain methanol molecules accomodated in channels of complex molecules.

General and crystal data for $\mathbf{2 \cdot 0 . 7 M e O H}$: graphite-monochromated $\mathrm{MoK} \alpha$ radiation ($\lambda=0.71073 \AA$), $a=10.1424(6) \AA, b=12.2350(10) \AA, c=13.1652(8) \AA, \alpha=102.995(6)^{\circ}, \beta=107.619(5)^{\circ}, \gamma=96.756(6)^{\circ}$, $V=1486.54(18) \AA^{3}, D_{\text {calc }}=1.449 \mathrm{~g} \mathrm{~cm}^{-3}$, data / restraints / parameters $=6447 / 3 / 417$, final R indices [I $>2 \sigma(I)]: R_{1}=0.0910 ; w R_{2}=0.1538, R$ indices (all data): $R_{1}=0.1575 ; w \mathrm{R}_{2}=0.1794$ (see for comparison Table 5, compound $\mathbf{2}$ and CIF file for comprehensive data).

Fig. S16 Partial crystal structure of 2 showing formation of centrosymmetrical dimer via $\mathrm{O} 23-\mathrm{H} 23 \mathrm{O} \cdots \mathrm{O} 12$ intermolecular hydrogen bond between hydroxyl group and the phenolate O 12 donor atom. The H 23 O atom is bifurcated between O 12 and O 14 atoms as proton acceptors.

Fig. S17 Crystal structure of $\mathbf{2}$ showing 3D hydrogen-bonded supramolecular network

Molecular and crystal structure of 1 and 6

Fig. S18 Mercury-rendered ORTEP view of the molecular structure of complex 1. The displacement ellipsoids are drawn at the 50% probability level at $296(2) \mathrm{K}$. The atom-numbering crystallographic scheme has been applied indicating asymmetric unit fragment. The hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. S19 Mercury-rendered ORTEP view of the molecular structure of complex $\mathbf{6} \cdot \mathbf{M e O H}$. The displacement ellipsoids are drawn at the 50% probability level at 296(2) K. The atom-numbering crystallographic scheme has been applied. The hydrogen atoms are drawn as spheres of arbitrary radius. Methanol molecule has been omitted.

Fig. S20 Fraction of crystal structure of complex 1 showing assembling of complex molecules along b axis into 2D infinite chains of rings via $\mathrm{O} 3-\mathrm{H} 13 \mathrm{O} \cdots \mathrm{O} 2$ intermolecular hydrogen bond.

Fig. S21 Crystal packing of $\mathbf{6} \cdot \mathbf{M e O H}$ viewed in $a b$ plane showing $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Selected bond lengths and angles

Table S1. Selected geometrical parameters for $\mathrm{H}_{2} \mathrm{~L}^{3}, \mathrm{H}_{2} \mathrm{~L}^{5}$ and $\mathrm{H}_{2} \mathrm{~L}^{6}$ ligands.

$\mathbf{A}-\mathbf{B}-\mathbf{C}$	$d(\mathbf{A}-\mathbf{B}) / \AA$	$d(\mathrm{~B}-\mathrm{C}) / \AA$	$\angle(\mathrm{A}-\mathrm{B}-\mathrm{C}) /^{\circ}$
$\mathrm{H}_{2} \mathrm{~L}^{3}$			
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	1.2285(14)	1.4816(16)	122.89(10)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	$1.2285(14)$	$1.3508(14)$	120.89(10)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	$1.3508(14)$	$1.3757(14)$	119.88(10)
N2-N1-C8	$1.3757(14)$	$1.2777(14)$	116.48(10)
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$1.2777(14)$	$1.4455(16)$	121.75(11)
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$1.4455(16)$	$1.4067(16)$	122.44(10)
C9-C10-O2	1.4067(16)	1.3597(14)	121.48(10)
$\mathrm{H}_{2} \mathrm{~L}^{5}$			
O1-C1-C2	1.231(2)	1.495(2)	121.56(15)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	1.231(2)	$1.348(2)$	119.43(15)
C1-N2-N1	1.348(2)	1.3754(18)	122.16(14)
N2-N1-C8	1.3754(18)	1.276(2)	116.59(13)
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$1.276(2)$	1.449(2)	121.77(15)
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	1.449(2)	1.399(2)	121.76(14)
C9-C10-O2	1.399(2)	1.3576 (19)	122.97(15)
$\mathrm{H}_{2} \mathrm{~L}^{6}$			
molecule 1			
$\mathrm{O} 11-\mathrm{C} 11-\mathrm{C} 12$	1.231(8)	1.510 (9)	121.0(6)
O11-C11-N12	1.231(8)	1.319(8)	123.5(6)
C11-N12-N11	$1.319(8)$	1.374(7)	118.7(5)
N12-N11-C18	$1.374(7)$	1.283(7)	119.2(5)
N11-C18-C19	1.283(7)	1.452(8)	121.4(5)
C18-C19-C110	1.452(8)	1.407(8)	120.8(5)
C19-C110-O12	1.407(8)	1.337(8)	123.9(5)
molecule 2			
O21-C21-C22	1.230(6)	1.499(7)	122.3(4)
O21-C21-N22	1.230(6)	$1.342(6)$	122.0(4)
$\mathrm{C} 21-\mathrm{N} 22-\mathrm{N} 21$	1.342(6)	1.377(5)	119.2(4)
N22-N21-C28	$1.377(5)$	1.260(6)	118.1(4)
N21-C28-C29	$1.260(6)$	1.454(7)	120.5(5)
C28-C29-C210	$1.454(7)$	1.381(7)	122.4(4)
C29-C210-O22	1.381(7)	1.361(6)	122.2(5)

Table S2. Geometry of hydrogen bonds and C-H $\cdots \mathrm{O}$ interactions $\left(\AA,{ }^{\circ}\right)$ for $\mathrm{H}_{2} \mathrm{~L}^{3}, \mathrm{H}_{2} \mathrm{~L}^{5}$ and $\mathrm{H}_{2} \mathrm{~L}^{6}$ ligands.

D-H $\cdots \mathrm{A}$	D-H	H $\cdots \mathrm{A}$	D...A	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	Symmetry code
$\mathrm{H}_{2} \mathrm{~L}^{3}$					
O2-H2O‥N1	0.842(16)	1.884(15)	$2.6322(14)$	147.3(15)	-
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 2$	0.863(14)	$2.383(13)$	3.1241 (14)	144.2(12)	$\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$
O3-H3O...O1	0.862(16)	1.833(16)	$2.6873(12)$	171.1(16)	1-x, $1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$
C3-H3...O3	0.9300	2.571(1)	$3.249(2)$	130.09(8)	x,3/2-y,-1/2+z
C15-H15B \cdots O1	0.9600	2.559(1)	$3.304(2)$	134.57(10)	-x,-1/2+y,-1/2-z
$\mathrm{H}_{2} \mathrm{~L}^{5}$					
O2-H2O…N1	0.843(18)	1.874(18)	2.6391(17)	150.3(17)	-
N2-H2N \cdots O1	0.891(16)	1.974(17)	2.8622(18)	174.6(17)	$1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}$
C5-H5 \cdots O3	0.9300	2.468(1)	3.393(2)	173.25(12)	3/2-x,-1/2+y, 1/2-z
$\mathrm{C} 7-\mathrm{H} 7 \ldots \mathrm{O} 2$	0.9300	2.652(1)	3.435(2)	142.22(11)	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$
$\mathrm{H}_{2} \mathrm{~L}^{6}$					
O12-H12O…N11	0.85(6)	1.85(7)	2.629(7)	153(7)	-
O22-H22O…N21	0.82(5)	1.85(6)	2.604(6)	153(6)	-
N12-H12N \cdots. ${ }^{\text {O11 }}$	0.88(5)	$2.13(4)$	2.988(7)	166(5)	$x,-y,-1 / 2+z$
N22-H22N \cdots. ${ }^{\text {O21 }}$	0.88(4)	1.99(4)	2.817(5)	156(4)	$\mathrm{x}, 1-\mathrm{y},-1 / 2+\mathrm{z}$
C 26 - $\mathrm{H} 26 \cdots \mathrm{O} 11$	0.9300	2.593(5)	3.499(9)	164.54(45)	-1+x,-y, $-1 / 2+z$
C28-H28 \cdots O21	0.9300	2.569(3)	3.312 (6)	137.22(33)	$\mathrm{x}, 1-\mathrm{y},-1 / 2+\mathrm{z}$
C114-H114..O22	0.9300	2.472(4)	$3.296(7)$	147.60(37)	$\mathrm{x}, 1-\mathrm{y},-1 / 2+\mathrm{z}$
C17-H17..O11	0.9300	2.634(4)	3.334(7)	132.57(42)	$x,-y,-1 / 2+z$

Table S3(a). Selected bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for 2.

Complex	2
$\mathrm{Co}(1)-\mathrm{N}(11)$	$1.880(2)$
$\mathrm{Co}(1)-\mathrm{N}(21)$	$1.867(2)$
$\mathrm{Co}(1)-\mathrm{O}(12)$	$1.879(2)$
$\mathrm{Co}(1)-\mathrm{O}(22)$	$1.899(2)$
$\mathrm{Co}(1)-\mathrm{O}(11)$	$1.928(2)$
$\mathrm{Co}(1)-\mathrm{O}(21)$	$1.884(2)$
$\mathrm{O}(11)-\mathrm{C}(11), \mathrm{O}(21)-\mathrm{C}(21)$	$1.278(3) ; 1.309(3)$
$\mathrm{O}(12)-\mathrm{C}(110), \mathrm{O}(22)-\mathrm{C}(210)$	$1.316(4) ; 1.325(3)$
$\mathrm{N}(11)-\mathrm{C}(18), \mathrm{N}(21)-\mathrm{C}(28)$	$1.287(4) ; 1.283(4)$
$\mathrm{N}(11)-\mathrm{N}(12), \mathrm{N}(21)-\mathrm{N}(22)$	$1.380(3) ; 1.385(3)$
$\mathrm{N}(12)-\mathrm{C}(11), \mathrm{N}(22)-\mathrm{C}(21)$	$1.333(4) ; 1.315(4)$
$\mathrm{N}(21)-\mathrm{Co}(1)-\mathrm{O}(12)$	$90.40(10)$
$\mathrm{N}(21)-\mathrm{Co}(1)-\mathrm{N}(11)$	$171.65(10)$
$\mathrm{O}(12)-\mathrm{Co}(1)-\mathrm{N}(11)$	$94.87(10)$
$\mathrm{N}(21)-\mathrm{Co}(1)-\mathrm{O}(21)$	$83.18(10)$
$\mathrm{O}(12)-\mathrm{Co}(1)-\mathrm{O}(21)$	$91.09(10)$
$\mathrm{N}(11)-\mathrm{Co}(1)-\mathrm{O}(21)$	$90.22(10)$
$\mathrm{N}(21)-\mathrm{Co}(1)-\mathrm{O}(22)$	$96.14(10)$
$\mathrm{O}(12)-\mathrm{Co}(1)-\mathrm{O}(22)$	$89.96(10)$
$\mathrm{N}(11)-\mathrm{Co}(1)-\mathrm{O}(22)$	$90.36(9)$
$\mathrm{O}(21)-\mathrm{Co}(1)-\mathrm{O}(22)$	$178.75(9)$
$\mathrm{N}(21)-\mathrm{Co}(1)-\mathrm{O}(11)$	$91.28(10)$
$\mathrm{O}(12)-\mathrm{Co}(1)-\mathrm{O}(11)$	$177.53(9)$
$\mathrm{N}(11)-\mathrm{Co}(1)-\mathrm{O}(11)$	$83.27(10)$
$\mathrm{O}(21)-\mathrm{Co}(1)-\mathrm{O}(11)$	$87.31(9)$
$\mathrm{O}(22)-\mathrm{Co}(1)-\mathrm{O}(11)$	

Table S3(b). Selected bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for $\mathbf{1}$ and $\mathbf{6} \cdot \mathrm{MeOH}$.

Complex	1	6•MeOH
$\mathrm{Co}(1)-\mathrm{N}(1)^{\text {i,ii }}$	1.874(3)	1.876(2)
$\mathrm{Co}(1)-\mathrm{N}(1)$	1.874(3)	1.876(2)
$\mathrm{Co}(1)-\mathrm{O}(2)$	1.884(2)	1.886(2)
$\mathrm{Co}(1)-\mathrm{O}(2)^{\text {i,ii }}$	1.884(2)	1.886(2)
$\mathrm{Co}(1)-\mathrm{O}(1)^{\text {i,ii }}$	1.892(2)	1.921(2)
$\mathrm{Co}(1)-\mathrm{O}(1)$	1.892(2)	1.921(2)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.289(4)	1.285(3)
$\mathrm{O}(2)-\mathrm{C}(10)$	1.324(4)	$1.313(3)$
$\mathrm{N}(1)-\mathrm{C}(8)$	1.282(4)	1.273(4)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.403(4)	1.405(3)
$\mathrm{N}(2)-\mathrm{C}(1)$	1.325(4)	1.331(4)
Bond angles		
$\mathrm{N}(1)^{\mathrm{i}, \mathrm{ii}} \mathrm{Co}(1)-\mathrm{N}(1)$	172.05(18)	172.48(15)
$\mathrm{N}(1)^{\mathrm{i}, \mathrm{ii}} \mathrm{Co}(1)-\mathrm{O}(2)$	90.36(11)	91.27(9)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$	95.24(11)	94.06(9)
$\mathrm{N}(1)^{\mathrm{i}, \mathrm{ii}}-\mathrm{Co}(1)-\mathrm{O}(2)^{\mathrm{i}, \mathrm{ii}}$	95.24(11)	94.06(9)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(2)^{\mathrm{i}, \mathrm{ii}}$	90.36(11)	91.27(9)
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(2)^{\mathrm{i}, \mathrm{ii}}$	90.41(15)	89.73(14)
$\mathrm{N}(1)^{\mathrm{i}, \mathrm{ii}}-\mathrm{Co}(1)-\mathrm{O}(1)^{\mathrm{i}, \mathrm{ii}}$	83.68(11)	83.24(9)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1)$	83.68(11)	83.24(9)
$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1)^{\mathrm{i}, \mathrm{ii}}$	90.64(11)	91.40(9)
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1)^{\mathrm{i}, \mathrm{ii}}$	90.33(10)	90.60(9)
$\mathrm{O}(2)^{\mathrm{i}, \mathrm{ii}} \mathrm{Co}(1)-\mathrm{O}(1)$	90.33(10)	90.61(9)
$\mathrm{O}(2)^{\mathrm{i}, \mathrm{ii}}-\mathrm{Co}(1)-\mathrm{O}(1)^{\mathrm{i}, \mathrm{ii}}$	178.70(10)	177.28(8)
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$	178.70(10)	177.28(8)
$\mathrm{N}(1)^{\mathrm{i}, \mathrm{ii}} \mathrm{Co}(1)-\mathrm{O}(1)$	90.64(11)	91.40(9)
$\mathrm{O}(1)^{\mathrm{i}, \mathrm{ii}} \mathrm{Co}(1)-\mathrm{O}(1)$	88.95(15)	89.18(13)

[^0]Table S4. Hydrogen bonds for $\mathbf{1 , 2}$ and $\mathbf{6} \cdot \mathrm{MeOH}\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

$\text { D-H } \cdots A$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	d(H) ${ }^{\text {a }}$)	d(D $\cdots \mathrm{A})$	<(DHA)	Symmetry code
1					
O3-H13O \cdots O2	0.83(3)	1.86 (3)	2.685(4)	175(3)	$\mathrm{x},+\mathrm{y}-1 / 2,-\mathrm{z}$
O3-H13O $\cdots \mathrm{N} 1$	0.83(3)	2.84(4)	$3.209(4)$	110(3)	-x, $-\mathrm{y},-\mathrm{z}$
$\mathrm{N} 2-\mathrm{H} 12 \mathrm{~N} \cdots \mathrm{~N} 2$	0.86(5)	1.98(5)	2.810(4)	162(4)	-x-1/2,+y, -z
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$	0.93	2.76	$3.373(4)$	124	$\mathrm{x},+\mathrm{y}-1 / 2,-\mathrm{z}$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}$	0.93	2.76	3.416(5)	128	$\mathrm{x},+\mathrm{y}+1 / 2,-\mathrm{z}$
C12-H12 $\cdots \mathrm{O} 3$	0.93	2.60	$3.399(5)$	144	$\mathrm{x}-1 / 2,+\mathrm{y}+1 / 2,+\mathrm{z}+1 / 2$
2					
O23-H23O $\cdots \mathrm{O} 12$	0.82(3)	2.25(4)	2.988(3)	149(3)	-x+2, -y+1, -z+2
O23-H23O‥014	0.82(3)	2.08(3)	2.749(4)	139(3)	-x+2, -y+1, -z+2
O13-H13O \cdots N22	0.82(4)	1.94(4)	2.734(4)	163(4)	-x+1, -y+1, -z+1
$\mathrm{O} 13-\mathrm{H} 13 \mathrm{O} \cdots \mathrm{N} 21$	0.82(4)	2.80 (4)	3.441(4)	137(3)	-x+1, -y+1, -z+1
$\mathrm{N} 12-\mathrm{H} 12 \mathrm{~N} \cdots \mathrm{O} 22$	0.84(3)	2.40 (3)	3.069(3)	137(3)	-x+1, -y, -z+1
N12-H12N \cdots O24	0.84(3)	2.10(4)	2.778 (4)	138(3)	-x+1, -y, -z+1
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 22$	0.93	2.62	$3.339(4)$	134	-x+1, -y, -z+1
C18-H18 \cdots O24	0.93	2.66	3.287(5)	125	-x+1, -y, -z+1
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 2$	0.93	2.76	3.573(5)	147	-x+1, -y, -z+1
C14-H14 \cdots O23	0.93	2.64	3.364(6)	135	-x+2, -y+1, -z+1
$\mathrm{C} 28-\mathrm{H} 28 \cdots \mathrm{O} 13$	0.93	2.82	$3.377(4)$	120	-x+1, -y+1, -z+1
C16-H16 $\cdots \mathrm{N} 22$	0.93	2.76	3.417(5)	129	-x+1, -y+1, -z+1
C23-H23 \cdots O13	0.93	2.93	$3.674(5)$	138	-x+1, -y, -z+2
C24-H24 \cdots O12	0.93	2.91	3.541(3)	127	-x, $-\mathrm{y},-\mathrm{z}+1$
6. MeOH					
N2-H12N \cdots O ${ }^{\text {a }}$	0.86(5)	1.94 (4)	2.763(5)	161(4)	$-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}+1$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 4$	0.93	2.73	$3.538(6)$	145	-x+1, -y+2, -z+1
C8-H8 $\cdots 00$	0.93	2.54	$3.303(5)$	139	-x+1, -y+2, -z+1
C4-H4 \cdots O3	0.93	2.51	3.183(5)	129	-x+1,+y-1, -z+1/2+1
C5-H5 \cdots O3	0.93	2.68	3.508 (5)	149	$\mathrm{x}-1 / 2,-\mathrm{y}+1 / 2+1,+\mathrm{z}-1 / 2$
C6-H6 \cdots O1	0.93	2.58	3.496(5)	169	$\mathrm{x},-\mathrm{y}+1,+\mathrm{z}-1 / 2$
C8-H8 $\cdots \mathrm{O} 2$	0.93	2.80	3.587(3)	144	x, $-\mathrm{y}+2,+\mathrm{z}-1 / 2$
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 2$	0.93	2.81	3.600 (3)	144	$\mathrm{x},-\mathrm{y}+2,+\mathrm{z}-1 / 2$

NMR spectroscopy

$\mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{H}$	$\mathbf{1}$
$\mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{OCH}_{3}$	$\mathbf{2}$
$\mathrm{R}=\mathrm{OH}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}, \mathrm{R}^{\prime \prime}=\mathrm{H}$	$\mathbf{3}$
$\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{H}$	$\mathbf{4}$
$\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{OCH}_{3}$	$\mathbf{5}$
$\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OCH}_{3}, \mathrm{R}^{\prime \prime}=\mathrm{H}$	$\mathbf{6}$

Fig. S22 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Co}\left(\mathrm{HL}^{1}\right)\left(\mathrm{L}^{1}\right)\right]$ in DMSO- d_{6}.

Fig. S23 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Co}\left(\mathrm{HL}^{2}\right)\left(\mathrm{L}^{2}\right)\right]$ in DMSO- d_{6}.

Fig. S24 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Co}\left(\mathrm{HL}^{3}\right)\left(\mathrm{L}^{3}\right)\right]$ in DMSO- d_{6}.

Fig. S25 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Co}\left(\mathrm{HL}^{4}\right)\left(\mathrm{L}^{4}\right)\right](4)$ in DMSO- d_{6}.

Fig. S26 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Co}\left(\mathrm{HL}^{5}\right)\left(\mathrm{L}^{5}\right)\right]$ in DMSO- d_{6}.

Fig. S27 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Co}\left(\mathrm{HL}^{\ominus}\right)\left(\mathrm{L}^{7}\right)\right]$ in DMSO- d_{6}.

Fig. S28 (a) ${ }^{1} \mathrm{H}$ NMR $\Delta \delta(\mathrm{ppm})$ of the signals of $\left[\mathrm{Co}\left(\mathrm{HL}^{5}\right)\left(\mathrm{L}^{5}\right)\right]$ at various $[\mathrm{NaOH}] /\left[\right.$ complex] ratios; (b) ${ }^{1} \mathrm{H}$ NMR $\Delta \delta(\mathrm{ppm})$ of the signals of $\left[\mathrm{Co}\left(\mathrm{HL}^{1}\right)\left(\mathrm{L}^{1}\right)\right]$ at various $[\mathrm{NaOH}] /[$ complex] ratios.

Fig. S29 (a) ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{1}$ in DMSO- d_{6} with a ratio $[\mathrm{NaOH}] /[$ complex $]=1.1$ recorded in dependence of time. (b) PC1 loadings obtained by principal component analysis of NMR spectra presented on Fig. 29a.

[^0]: Symmetry transformations used to generate equivalent atoms: $i=-x,-y+1 / 2$, z for $\mathbf{1}$ and $i i=-x+1, y,-z+3 / 2$ for 6• MeOH

