SUPPORTING INFORMATION FOR

Gold nanoparticles are suitable cores for building tunable iminosugar multivalency

C. Matassini,^{*a,b*} M. Marradi,^{*b,c,†**} F. Cardona,^{*a*} C. Parmeggiani,^{*a,d*} I. Robina,^{*e*} A. J. Moreno-Vargas,^{*e*} S. Penadés,^{*b,c*} A. Goti^{*a**}

[a] Dr. C. Matassini, Dr. C. Parmeggiani, Dr. F. Cardona, Prof. A. Goti, Department of Chemistry "Ugo Schiff" University of Florence Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy; [b] Dr. C. Matassini, Dr. M. Marradi, Prof. S. Penadés CIC biomaGUNE, Biofunctional Nanomaterilas Unit, Lab. GlycoNanoTechnology, P. Miramón 186, San Sebastián, Spain; [c] Dr. M. Marradi, Prof. S. Penadés, CIBER-BBN, P. Miramón 186, 20009 San Sebastián, Spain; [d] Dr. C. Parmeggiani, CNR-INO, U.O.S. Sesto Fiorentino and LENS, via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy; [e] Prof. I Robina, Dr. A. J. Moreno-Vargas, Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Prof. García González 1, E-41012, Sevilla, Spain; ⁺Dr. M. Marradi present address: IK4-CIDETEC, Biomaterials Unit, P. Miramón 196, San Sebastián, Spain.

Table of contents

General methods	S3
Synthesis and characterization of pyrrolizidine alkaloid (PA) derivative 8	S4
Synthesis and characterization of piperidine alkaloid (PIPA) derivative 9	S6
General Procedure for the "in situ" deprotection of S-acetyl conjugates 8a and 9a	S8
Preparation and characterization of Au-GNPs	S8
General Procedure for the preparation of Au-GNPs coated with iminosugars	S8
Preparation and characterization of 20% PA- β Glc NPs 12	S9
Preparation and characterization of 40% PA- β Glc NPs 13	S11
Preparation and characterization of 20% PA- α Man NPs 14	S13
Preparation and characterization of 40% PA- $lpha$ Man NPs 15	S15
Preparation and characterization of 20% PIPA- β Glc NPs 16	S17
Preparation and characterization of 40% PIPA-βGlc NPs 17	S19
Inhibition of N-acetyl 1 , Au-GNPs 12-15, 18 and 19 towards a panel of commercial glycosidases	S21
IC ₅₀ of Au-GNPs N-acetyl 1 towards Amyloglucosidase from Aspergillus niger	S23
IC ₅₀ of Au-GNPs 12 towards Amyloglucosidase from Aspergillus niger	S23
IC ₅₀ of Au-GNPs 13 towards Amyloglucosidase from Aspergillus niger	S24
IC ₅₀ of Au-GNPs 14 towards Amyloglucosidase from <i>Aspergillus niger</i>	S24
IC ₅₀ of Au-GNPs 15 towards Amyloglucosidase from Aspergillus niger	S25

General methods

All chemicals were purchased as reagent grade from Sigma-Aldrich, except chloroauric acid (Strem Chemicals), and were used without further purification. Reactions were monitored by thin-layer chromatography (TLC) on silica gel 60 F254 aluminium-backed sheets (Merck) with visualization under UV (254 nm) and/or by staining with p-anisaldehyde solution [anisaldehyde (25 mL), H₂SO₄(25 mL), EtOH (450 mL), and CH₃COOH (1 mL)], 10% H₂SO₄ solution in EtOH, ninhydrin solution [ninhydrin (0.25 mL), EtOH (100 mL)] followed by heating at over 200 °C. Size-exclusion column chromatography was performed on Sephadex LH-20 (GE Healthcare). Flash column chromatography (FCC) was performed on silica gel 60 (0.063-0.200 mm; Merck). UV/Vis spectra were measured with Beckman Coulter DU 800 UV/Vis spectrophotometer. Infrared (IR) spectra were recorded from 4000 to 750 cm⁻¹ with a Thermo Nicolet 6700 FT-IR model spectrometer; solids were pressed into KBr pellets and oils were subjected to attenuated total reflection (ATR). ¹H and ¹³C NMR spectra were recorded on Bruker 500 MHz (high resolution) spectrometer. Chemical shifts (δ) are given in ppm relative to the residual signal of the solvent used. Coupling constants (J) are reported in Hz. Splitting patterns are described by using the following abbreviations: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; m, multiplet. Mass spectra were measured with an Esquire 6000 ESI-Ion Trap spectrometer from Bruker Daltonics. High-resolution mass spectra (HRMS) were obtained using the MALDI technique with a 4700 Proteomics Analyzer (Applied Biosystems) operated in MALDI-TOF-TOF configuration. Optical rotations were determined with a Perkin–Elmer 341 polarimeter. For transmission electron microscopy (TEM) examinations, a single drop (2 μ L) of an aqueous solution (ca. 0.05 mgmL⁻¹ in Milli-Qwater) of the gold glyconanoparticles (GNPs) was placed on a copper grid coated with a carbon film (Electron Microscopy Sciences). The grid was left to dry in air for several hours at room temperature. TEM analysis was performed with a JEOL JEM-2100Fmicroscope, both operating at 200 kV. The average diameters and numbers of gold atoms of the GNPs were deduced as described in a previous study.¹ Laboratory distilled water was further purified using a Milli-Qreagent grade water system (Millipore).

¹ O. Martínez-Ávila, K. Hijazi, M. Marradi, C. Clevel, C. Campion, C. Kelly, S. Penadés, *Chem. Eur. J.* 2009, 15, 9874–9888.

Synthesis of pyrrolizidine alkaloid (PA) derivative 8: A solution of compound 7 (74.5 mg, 171 µmol), 1– hydroxybenzotriazole (HOBt, 34.7 mg, 257 μmol) and O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU, 97.5 mg, 257 µmol) in DMF (2 mL) was left stirring for 30 min and then added to a solution of pyrrolizidine derivative 1 (33.5 mg, 178 µmol) and N,N-diisopropylethylamine (47 µL, 267 µmol) in DMF (1.8 mL). The reaction mixture was left stirring at room temperature for 15 hours, then diluted with AcOEt (10 mL) and washed with H₂O (5 x 4 mL). The organic layer was then washed with a saturated solution of NaHCO₃ (3 x 10mL), water (2 x 10 mL) and brine (1 x 8 mL), dried over anhydrous Na₂SO₄ and concentrated under vacuum. Purification through gradient column chromatography (DCM/MeOH from 10:1 to 5 : 1) afforded **8** (53 mg, 87 µmol) in a 51% yield. R_f = 0.30 (DCM/MeOH 7 : 1). $[\alpha]_{D}^{29}$ = + 9.6 (c = 0.78, MeOH). ¹H NMR (500 MHz, CD₃OD) δ = 4.54 (quin, J = 6.4 Hz, 1H, 6-H), 4.02 (s, 2H, HNCOCH₂-), 3.84-3.77 (m, 3H, 1-H, 2-H, 8-Ha), 3.72-3.59 (m, 13H, OCH₂, 8-Hb), 3.53 (q, J = 6.5 Hz, 1H, 7a-H), 3.49 (t, J = 6.7 Hz, 2H, OCH₂(CH₂)₁₁SAc), 3.22 (dd, J = 11.6, 5.9 Hz, 1H, 5-Ha), 3.05 (dd, J = 11.6, 6.3 Hz, 1H, 5-Hb), 2.88 (t, J = 7.3 Hz, 3H, -CH₂SAc, 3-H), 2.32 (s, 3H, SAc), 2.22 (dt, J = 12.5, 6.0 Hz, 1H, 7-Ha), 2.09 (dt, J = 12.5, 7.5 Hz, 1H, 7-Hb), 1.62-1.55 (m, 4H, -CH₂CH₂SAc, -OCH₂CH₂), 1.40-1.29 (m, 14H, -CH₂-) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 196.3 (s, SCOCH₃), 171.3 (s, CONH₂), 80.8 (d, C-1), 77.2 (d, C-2), 70.1 (d, C-3), 70.0-69.8 (t, 8C, OCH₂), 67.1 (d, C-7a), 61.6 (t, C-8), 58.7 (t, C-5), 47.8 (d, C-6), 35.4 (t, C-7), 29.3-25.8 (11C, t,-CH₂-, q, SCOCH₃) ppm. IR (KBr): v = 3351, 2925, 2854, 1691, 1660, 1542, 1465, 1108 cm⁻¹. HRMS (ESI): *m/z* calcd for C₂₉H₅₄N₂O₉S: 629.3448. [M+Na]⁺; found: 629.3485.

¹³C NMR of compound **8** (125 MHz, CD₃OD)

Synthesis of piperidine alkaloid (PIPA) derivative 9: A solution of EDCHCI (1-Ethyl-3-(3dimethylaminopropyl)carbodimide hydrochloride (32.0 mg, 168 µmol), 1–hydroxybenzotriazole (HOBt, 21.0 mg, 158 µmol) and 7 (47.0 mg, 108 µmol) in DMSO (0.4 mL) was left stirring for 10 min. and then added to a solution of piperidine derivative 2 (20.0 mg, 105 μ mol) and N,N-diisopropylethylamine (33 μ L, 189 μ mol) in DMSO (0.3 mL). The reaction mixture was left stirring at room temperature, under Ar atmosphere, for 65 hours, then diluted with AcOEt (10 mL) and washed with H₂O (5 x 4 mL). The organic layer was then washed with water (2 x 6 mL) and brine (1 x 4 mL), dried over anhydrous Na_2SO_4 and concentrated under vacuum. The crude was triturated with n-Hexane (5 x 2 mL) and then purified by column chromatography (DCM/MeOH 10:1) affording 56 mg of **9** (92 μ mol, 89% yield). R_f = 0.52 (DCM/MeOH 7 : 1). [α]_D²⁹ = - 12.5 (c = 0.80, MeOH). ¹H NMR (500 MHz, CD₃OD) δ = 4.03 (s, 2H, HNCOCH₂-), 3.99 (br s, 1H, 3-H), 3.88 (td, J = 7.1, 3.7 Hz, 1H, 5-H), 3.77-3.48 (m, 17H, 1-H, OCH₂, 4-H, 3'-H), 2.97-2.95 (m, 1H, 6-Ha), 2.88 (t, J = 7.4 Hz, 3H, -CH₂SAc, 2-Ha), 2.68-2.60 (m, 2H, 1'-H), 2.58-2.48 (m, 1H, 2-Hb), 2.32 (s, 4H, SAc, 6-Hb), 1.82 (quin, 6.8 Hz, 2H, 2'-H), 1.64-1.55 (m, 4H, -CH₂CH₂SAc, -OCH₂CH₂), 1.43-1.29 (m, 14H, -CH₂-) ppm. ¹³C NMR (125 MHz, CD₃OD) δ = 196.2 (s, SCOCH₃), 171.5 (s, CONH₂), 71.1 (d, C-4), 71.0-69.8 (8 C, t, NHCOCH₂O, CH₂O), 69.7 (d, C-3), 68.3 (d, C-5), 54.8 (3C, t, C-2, C-6, C-1'), 36.7 (t, C-3'), 29.4-29.1 (7C, t, -CH₂-), 28.8 (q, SAc), 28.5 (t, -CH₂-), 25.4 (t, CH₂SAc), 25.8 (t, -CH₂-), 25.7 (t, C-2').ppm. IR (KBr): v = 3319, 2924, 2854, 1691, 1663, 1541, 1456, 1352, 1112 cm⁻¹. HRMS (ESI): m/z calcd for C₂₉H₅₆N₂O₉S: 610.3863. [M+2H]⁺, found: 610.3824.

 ^{13}C NMR of compound **9** (125 MHz, CD₃OD)

General Procedure for the "in situ" deprotection of S-acetyl conjugates 8a and 9a: To a 0.03 M MeOH solution of iminosugar derivative (**8** and **9**) solid CH₃OMe (10 equiv.) was added and the reaction mixture was left stirring for 2 hours at 25 °C under Ar. The complete disappearance of starting material was attested via ¹H NMR and the crude was directly used for the preparation of PA-GNPs and PIPA-GNPs.

Preparation and characterization of Au-GNPs: The Au-GNPs coated with iminosugars (PA or PIPA) and simple monosaccharide β GlcC₅S or α ManC₅S (PA-Au-GNPs **12-15** and PIPA-Au-GNPs **16-17**) were prepared by reduction of an Au(III) salt using sodium borohydride in the presence of a mixture of thiol-ending iminosugar conjugate (**8a** and **9a**) and β GlcC₅S **10** or α ManC₅S **11**, as ligands, in different ratios following a reported procedure.¹ A 4:1 or a 3:2 sugar/iminosugar ligand ratio was used to prepare 20% PA-GNPs and 40% PA-GNPs, respectively. For the analysis of the ratio between the iminosugar ligands and β GlcC₅S (in the case of PA-Au- β Glc or PIPA-Au- β Glc) or α ManC₅S (in the case of PA-Au- α Man) ligands, ¹H NMR spectra of the initial mixture and of the supernatant after Au-GNPs formation were recorded. The ligands loading on the PA-Au-GNPs and PIPA-Au-GNPs was also evaluated by quantitative NMR (qNMR) using 3-(trimethylsilyI)propionic-2,2,3,3-d₄ acid (TSP-d₄) as an internal standard in the D₂O solution of the PA-Au-GNPs or PIPA-Au-GNPs. The prepared PA-Au-GNPs and PIPA-Au-GNPs were freeze-dried and stored at 4 °C. In these conditions, the Au- GNPs can be stored for months maintaining their biophysical properties. The Au-GNPs coated only with simple monosaccharide **18** and **19** were also prepared as previously described.1

General Procedure for the preparation of Au-GNPs coated with iminosugars: An aqueous solution of HAuCl₄ (25 mM, 1 equiv.) was added to a 12 mM methanolic solution of a suitable mixture of thiol-ending sugar and iminosugar conjugates (3 equiv. overall). An aqueous solution of NaBH₄ (1 M, 27 equiv.) was then added in four portions, with vigorous shaking. The black suspension formed was shaken for 2 hours at 25 °C. After that, the supernatant was removed and analysed by ¹H NMR to study the nanoparticle ligands composition. The residue was washed several times with MeOH. In order to well separate the nanoparticles from the supernatant a centrifugation (4000 xg, 10 °C, 2 min) is required in some cases. The residue was dissolved in a minimal volume of HPLC Gradient grade water and purified by dialysis (SnakeSkin® Pleated Dialysis Tubing, 10,000 MWCO). Iminosugar coated Au-GNPs were obtained as a dark-brown powder after freeze-drying and characterized via ¹H NMR, UV-Vis Spectroscopy and TEM analysis. The average number of gold atoms was calculated on the basis of the average diameter obtained by TEM micrographs² and molecular formulas of the Au-GNPs were estimated according to previous work.¹

 ² M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, R. W. Murray, *Langmuir* 1998, 14, 17–30.

Preparation of 20% PA-βGic NPs (12): A 1:4 mixture of thiol-ending PA conjugate **8a** (7.5 mg, 13.2 μmol) and βGlcC₅S **10** (14.6 mg, 51.7 μmol) in MeOH (5.4 mL) was used, to afford 5.6 mg of **12** (98% yield in Au). TEM (average diameter): 1.3 ±0.3 nm (main population, >85%). Quantitative ¹H NMR (500 MHz, D₂O containing 0.05 wt. % of 3-(trimethylsilyl)propionic-*2,2,3,3-d*₄ acid, sodium salt as an internal standard): 0.58 mg of PA-GNPs were dissolved in 180 μL of D₂O and 40 μL of D₂O containing 0.05 wt.% TSP were added and 38 nmoles of PA conjugate were found.³ Significant peaks: $\delta = 4.36$ (br s, from βGlcC₅S), 4.00 (s, NHCOCH₂- from PA conjugate), 3.84-3.22 (m), 3.05-2.97 (m, from PA conjugate), 2.78-2.66 (m, from PA conjugate), 2.15-1.14 (m); ratio between PA conjugate and βGlcC₅S signals ≈1: 4.6. This result is in fair agreement with the molar ratio of conjugates per nanoparticle (20% of PA conjugate and 80% of βGlcC₅S) as estimated by NMR analysis of the ligand mixture before and after nanoparticles formation. IR (KBr): v ~ 3388, 2921, 2852, 1635 (amide), 1383, 1077 cm⁻¹. UV/Vis (H₂O, 0.05 and 0.10 mg/mL): $\lambda = 516$ nm (gold surface plasmon band). Estimated average molecular weight for (C₂₇H₅₁N₂O₈S)₃(C₁₁H₂₁O₆S)₂₇Au₁₄₀: ~37.0 KDa.

¹H NMR of sugar/iminosugar ligands mixture before and after formation of Au-GNPs **12** (500 MHz, CD₃OD).

¹H NMR and ¹H qNMR with TSP-d₄ of Au-GNPs **12** (500 MHz, D_2O).

³ In the quantitative NMR (qNMR) the **7-Ha** proton signal of PA-conjugate was selected for integration as it falls in a spectral region free of other signals.

TEM micrograph in H_2O and size-distribution histogram obtained by measuring 300 nanoparticles (average diameter 1.3 ± 0.3 nm, 13% shows a >3 nm diameter).

UV/vis spectra of H_2O solution of Au-GNPs **12** recorded at two different concentrations.

Preparation of 40% PA-βGic NPs (13): A 2:3 mixture of thiol-ending PA conjugate **8a** (3.7 mg, 6.6 μmol) and βGicC₅S **10** (2.8 mg, 9.9 μmol)in MeOH (1.4 mL) was used, to afford 1.1 mg of **13** (77% yield in Au).TEM (average diameter): 1.4 ± 0.4 nm. Quantitative ¹H NMR (500 MHz, D₂O containing 0.05 wt. % of 3-(trimethylsilyl)propionic-*2,2,3,3-d*₄ acid, sodium salt as an internal standard): 0.32 mg of PA-GNPs were dissolved in 180 µL of D₂O and 25 µL of D₂O containing 0.05 wt.% TSP were added and 56 nmoles of PA conjugate were found.³ Significant peaks: δ = 4.50-4.36 (m, from PA conjugate), 3.99 (s, NHCOC*H*₂- from PA conjugate), 3.84-3.14 (m), 3.07-2.97 (m, from PA conjugate), 2.77-2.65 (m, from PA conjugate), 2.15-2.03 (m, from PA conjugate), 1.97-1.87 (m, from PA conjugate), 1.81-1.01 (m); ratio between PA conjugate and βGicC₅S signals is impossible to define since the βGicC₅S anomeric signal disappeared from the spectrum; this phenomenon is in agreement with the literature¹ and it is probably due to the fact that at this densities the long active ligand folds and collapse on the glucose shell hampering a proper proton relaxation.⁴ IR (KBr): v ~3419, 2922, 2853, 1663, 1631, 1600 (amide), 1383, 1108 cm⁻¹. UV/Vis (H₂O, 0.05, 0.10 and 0.20 mg/mL): maximum absorption at 520 nm (gold surface plasmon band) not observed. Estimated average molecular weight for (C₂₇H₅₁N₂O₆S)₉(C₁₁H₂₁O₆S)₁₄Au₁₄₀: ~36.5 kDa.

 1 H NMR of sugar/iminosugar ligands mixture before and after formation of Au-GNPs **13** (500 MHz, CD₃OD).

¹H NMR and ¹H qNMR with TSP-d₄ of Au-GNPs **13** (500 MHz, D_2O).

⁴ M. Reynolds, M. Marradi, A. Imberty, S. Penades, S. Perez, *Chem. Eur. J.* **2012**, *18*, 4264-4273.

TEM micrograph in H_2O and size-distribution histogram obtained by measuring 300 nanoparticles (average diameter 1.4 ± 0.4 nm, 2% shows a >3 nm diameter).

UV/vis spectra of H_2O solution of Au-GNPs **13** recorded at three different concentrations.

Preparation of 20% PA-αMan NPs (14): A 1:4 mixture of thiol-ending PA conjugate **8a** (4.7 mg, 8.2 μmol) and αManC₅S **11** (9.3 mg, 33.0 μmol) in MeOH (3.4 mL) was used, to afford 4.4 mg of **14** (96% yield in Au). TEM (average diameter): 1.9 ± 0.4 nm. Quantitative ¹H NMR (500 MHz, D₂O containing 0.05 wt. % of 3- (trimethylsilyl)propionic-*2,2,3,3-d*₄ acid, sodium salt as an internal standard): 0.60 mg of PA-GNPs were dissolved in 180 µL of D₂O and 25 µL of D₂O containing 0.05 wt.% TSP were added and 38 nmoles of PA conjugate were found.³ Significant peaks: δ = 4.41-4.32 (m, from PA conjugate), 4.00 (s, NHCOC*H*₂- from PA conjugate), 3.96-3.19 (m), 3.05-2.98 (m, from PA conjugate), 2.78-2.65 (m, from PA conjugate), 2.19-1.06 (m); ratio between PA conjugate and αManC₅S signals is impossible to define since the αManC₅S anomeric signal is covered by the solvent residual peak. IR (KBr): v ~3368, 2922, 2848, 1675, 1633 (amide), 1447, 1092 cm⁻¹. UV/Vis (H₂O, 0.05 and 0.10 mg/mL): λ =528 nm (gold surface plasmon band). Estimated average molecular weight for (C₂₇H₅₁N₂O₈S)₄(C₁₁H₂₁O₆S)₁₉Au₁₄₀: ~35 kDa.

¹H NMR of sugar/iminosugar ligands mixture before and after formation of Au-GNPs **14** (500 MHz, CD₃OD).

S13

TEM micrograph in H_2O and size-distribution histogram obtained by measuring 300 nanoparticles (average diameter 1.9 ± 0.4 nm).

UV/vis spectra of H_2O solution of Au-GNPs 14 recorded at two different concentrations.

Preparation of 40% PA-αMan NPs (15): A 2:3 mixture of thiol-ending PA conjugate **8a** (6.0 mg, 9.9 µmol) and αManC₅S **11** (4.2 mg, 14.8 µmol) in MeOH (2.0 mL) was used, to afford 1.8 mg of **15** (84% yield in Au). TEM (average diameter): 1.2 ± 0.2 nm. Quantitative ¹H NMR (500 MHz, D₂O containing 0.05 wt. % of 3- (trimethylsilyl)propionic-*2,2,3,3-d*₄ acid, sodium salt as an internal standard): 0.33 mg of PA-GNPs were dissolved in 180 µL of D₂O and 25 µL of D₂O containing 0.05 wt.% TSP were added and 79 nmoles of PA conjugate were found.³ Significant peaks: δ = 4.43-4.29 (m, from PA conjugate), 3.99 (s, NHCOC*H*₂- from PA conjugate), 3.85-3.18 (m), 3.05-2.95 (m, from PA conjugate), 2.78-2.61 (m, from PA conjugate), 2.14-2.02 (m, from PA conjugate), 1.97-1.84 (m, from PA conjugate), 1.72-0.74 (m); ratio between PA conjugate and αManC₅S signals is impossible to define since the αManC₅S anomeric signal is covered by the solvent residual peak. IR (KBr): v ~ 3418, 2924, 2856, 1660, 1628, 1437, 1383, 1093, 1064 cm⁻¹. UV/Vis (H₂O, 0.05 and 0.10 mg/mL): maximum absorption at 520 nm (gold surface plasmon band) not observed. Estimated average molecular weight for (C₂₇H₅₁N₂O₈S)₉(C₁₁H₂₁O₆S)₁₄Au₁₄₀: ~36.5 kDa.

¹H NMR of sugar/iminosugar ligands mixture before and after formation of Au-GNPs **15** (500 MHz, CD₃OD).

¹H NMR and ¹H qNMR with TSP-d₄ of Au-GNPs **15** (500 MHz, D_2O).

TEM micrograph in H_2O and size-distribution histogram obtained by measuring 300 nanoparticles (average diameter 1.2 ± 0.2 nm).

UV/vis spectra of H₂O solution of Au-GNPs 15 recorded at two different concentrations.

Preparation of 20% PIPA-βGIc NPs (16): A 1:4 mixture of thiol-ending PIPA conjugate **9a** (3.1 mg, 5.5 µmol) and βGlcC₅S **10** (6.0 mg, 21.3 µmol) in MeOH (5.4 mL) was used, to afford 1.6 mg of **16** (64%% yield in Au). TEM (average diameter): 1.6 ±0.3 nm. Quantitative ¹H NMR (500 MHz, D₂O containing 0.05 wt. % of 3- (trimethylsilyl)propionic-*2,2,3,3-d*₄ acid, sodium salt as an internal standard): 0.32 mg of PIPA-GNPs were dissolved in 180 µL of D₂O and 25 µL of D₂O containing 0.05 wt.% TSP were added and 56 nmoles of PA conjugate were found.⁵ Significant peaks: δ = 4.34 (br s, from βGlcC₅S), 3.99 (s, NHCOC*H*₂- from PIPA conjugate), 3.94-2.98 (m), 2.94-2.75 (m, from PIPA conjugate), 2.52-2.22 (m, from PIPA conjugate), 2.18-1.99 (m, from PIPA conjugate), 1.82-0.72 (m). IR (KBr): v ~ 3424, 2920, 2848, 1637 (amide), 1438, 1381, 1076 cm⁻¹. UV/Vis (H₂O, 0.05 and 0.10 mg/mL): λ =514 nm (gold surface plasmon band). Estimated average molecular weight for (C₂₆H₅₁N₂O₈S)₇(C₁₁H₂₁O₆S)₂₈Au₁₄₀: ~39.0 KDa. In this case a 20% of PIPA conjugate match perfectly with the quantitative analysis, albeit a 15% amount of PIPA conjugate was attested by the NMR analysis of the ligand mixture before and after nanoparticle formation.

¹H NMR of sugar/iminosugar ligands mixture before and after formation of Au-GNPs **16** (500 MHz, CD₃OD).

¹H NMR and ¹H qNMR with TSP-d₄ of Au-GNPs **16** (500 MHz, D₂O).

⁵ In the quantitative NMR (qNMR) the multiplet corresponding to **1'-H**, **2-Hb** and **6-Hb** proton signals (δ = 2.65-2.02 ppm, 4H) of PIPA-conjugate, was selected for integration as it falls in a spectral region free of other signals.

TEM micrograph in H_2O and size-distribution histogram obtained by measuring 300 nanoparticles (average diameter 1.6± 0.3 nm, 45% shows a >3 nm diameter).

UV/vis spectra of H_2O solution of Au-GNPs **16** recorded at two different concentrations.

Preparation of 40% PIPA-βGic NPs (17): A 2:3 mixture of thiol-ending PA conjugate **9a** (3.7 mg, 6.5 μmol) and βGlcC₅S **10** (2.8 mg, 9.8 μmol) in MeOH (1.4 mL) was used, to afford 1.1 mg of **17** (77% yield in Au). TEM (average diameter): 1.7±0.4 nm. Quantitative ¹H NMR (500 MHz, D₂O containing 0.05 wt. % of 3- (trimethylsilyl)propionic-*2,2,3,3-d*₄ acid, sodium salt as an internal standard): 0.33 mg of PIPA-GNPs were dissolved in 180 µL of D₂O and 25 µL of D₂O containing 0.05 wt.% TSP were added and 71 nmoles of PA conjugate were found.5 Significant peaks: δ = 4.50-4.36 (m, from PA conjugate), 3.99 (s, NHCOC*H*₂- from PIPA conjugate), 3.91 (*br* s from PIPA conjugate), 3.80-3.30 (m), 3.56 (q, Et₂O), 3.27 (s, MeOH), 3.25-3.17 (m, from PIPA conjugate), 3.06-2.82 (m, from PIPA conjugate), 2.70-2.45 (m, from PIPA conjugate), 1.82-1.20 (m), 1.16 (t, Et₂O); ratio between PA conjugate and βGlcC₅S signals is impossible to define since the βGlcC₅S anomeric signal disappeared from the spectrum; see comment on **13**.⁴ IR (KBr): v ~3436, 2920, 2856, 1631 (amide), 1392, 1364, 1033 cm⁻¹. UV/Vis (H₂O, 0.05, 0.10 and 0.20 mg/mL): maximum absorption at 520 nm (gold surface plasmon band) not observed. Estimated average molecular weight for (C₂₆H₅₁N₂O₈S)₉(C₁₁H₂₁O₆S)₁₄Au₁₄₀: ~36.5 kDa.

¹H NMR of sugar/iminosugar ligands mixture before and after formation of Au-GNPs **17** (500 MHz, CD₃OD).

¹H NMR and ¹H qNMR with TSP-d₄ of Au-GNPs **17** (500 MHz, D_2O).

TEM micrograph in H_2O and size-distribution histogram obtained by measuring 300 nanoparticles (average diameter 1.7 ± 0.4 nm).

UV/vis spectra of H_2O solution of Au-GNPs **17** recorded at two different concentrations.

Inhibition data for monovalent reference compound *N*-acetyl 1 and Au-GNPs 12-15, 18 and 19 towards a panel of commercial glycosidases.

The percentage of inhibition towards the corresponding glycosidase was determined in the presence of 1 mM (for **N**-acetyl 1) and 0.16 mg/mL (for **Au-GNPs 12-15, 18** and **19**) of the inhibitor on the well (except when other concentration is indicated). Each enzymatic assay (final volume 0.12 mL) contained 0.01 to 0.5 units mL⁻¹ of the enzyme and 10 mM aqueous solution of the appropriate *p*-nitrophenyl glycopyranoside substrate buffered to the optimal pH of the enzyme. The enzyme and the inhibitor were preincubated for 5 min at rt, and the reaction started by the addition of the substrate. After 20 min of incubation at 37 °C, the reaction was stopped by the addition of 0.1 mL of sodium borate buffer (pH 9.8). The *p*-nitrophenolate formed was measured by visible absorption spectroscopy at 405 nm. Under these conditions, the *p*-nitrophenolate released led to optical densities linear with both reaction time and concentration of the enzyme. For the best inhibitors (% inhibition \geq 80), the IC₅₀ value (concentration of inhibitor required for 50% inhibition of enzyme activity) towards the corresponding glycosidase was calculated. IC₅₀ values were calculated from plots of percentage of inhibition *versus* inhibitor concentration. Each experiment (%, IC₅₀) was performed in duplicate and the average values were given.

	% Inhibition at 0.16 mg/mL of Au-GNP I C₅₀ μ M [#]						
	N-acetyl 1§	12	13	14	15	18	19
α-L-fucosidase							
bovine kidney	-	-	-	-	_*	nd	nd
α -galactosidase						nd	nd
coffee beans	-	-	-	-	-*		
β-galactosidase						nd	nd
Escherichia coli	-	-	-	-	-*		
Aspergillus oryzae	-	-	-	-	nd	nd	nd
α-glucosidase							
yeast	-	-	-	-	nd	nd	nd
rice	_	-	-*	-	nd	nd	nd
amyloglucosidase							
Aspergillus niger	97% 1.7	83% 4.4	91% 8.3	83% 4.0	90% 13.9	-	-
β-glucosidase							
almonds	36%	-	-*	-	nd	nd	nd
α-mannosidase							
jack beans	-	-	-	-	-*	nd	nd
β-mannosidase							
snail	-	-	-	-	nd	nd	nd
β- <i>N</i> -acetylglucosaminidase							
jack beans	64%	-	-*	-	nd	nd	nd

[#] : IC_{50} is referred to the μ M iminosugar concentration as determined by qNMR of GNPs. [§] : Percentage of inhibition at 1 mM concentration of inhibitor. - : no inhibition was detected at 0.16 mg/mL of inhibitor.

-*: no inhibition was detected at 0.033 mg/mL of inhibitor.

nd: not determined

Monovalent compound: *N***-acetyl 1**, whose synthesis has been previously reported.⁶

N-acetyl 1

⁶ C. Parmeggiani, S. Catarzi, C. Matassini, G. D'Adamio, A. Morrone, A. Goti, P. Paoli, F. Cardona, ChemBioChem, 2015, 16, 2054-2064.

IC₅₀ graphic for compound for compound *N*-acetyl 1

IC₅₀ graphic for compound 12:

IC₅₀ graphic for compound 13:

IC₅₀ graphic for compound 14:

IC₅₀ graphic for compound 15:

