Electronic Supplementary Information for

Enhanced Rate Capability of Lithium Ion Battery Anode Based on Liquid-Solid-Solution Assembly of Fe₂O₃ on Crumpled Graphene

Xinghong Cui,^a Yanfang Zhu,^a Fei Li,^c Daijun Liu,^a Jianjun Chen,^a Yuxin Zhang,^c Li Li Zhang,^{b,*} and Junyi Ji^{a,*}

^a College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
^b Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island
627833, Singapore.

^c College of Material Science and Engineering, Chongqing University, Chongqing, 400044, China.

Corresponding Author

Junyi Ji, E-mail: junyiji@scu.edu.cn

Li Li Zhang, Email: zhang_lili@ices.a-star.edu.sg

Figure S1. SEM images of a, b) $Fe_2O_3@rGO$ (5:5) and c, d) $Fe_2O_3@rGO$ (9:1) at different magnifications. The graphene sheets in $Fe_2O_3@rGO$ (5:5) are thicker than $Fe_2O_3@rGO$ (7:3), this may due to the higher graphene content in the composite. In contrast, the $Fe_2O_3@rGO$ (9:1) shows Fe_2O_3 aggregation on the graphene surface, which may due to the higher Fe^{2+} nucleus density during crystallization process.

Figure S2. EIS of Fe_2O_3 @rGO electrodes with various graphene amount after 20 chargedischarge cycles at 0.2 A g⁻¹.