Supporting Information for

Synthesis of CuS nanoplates-contained PDMS film with excellent near-infrared shielding property

Wenjun Zhong,^a Nuo Yu,^a Lisha Zhang,*b Zixiao Liu,^a Zhaojie Wang,^a Junqing Hu,^a and

Zhigang Chen*a

The determination of photothermal conversion efficiency of CuS nanoplates

The photothermal conversion efficiency of CuS nanoplates was measured by a classic solution method developed by Roper et al in $2007¹$ $2007¹$ $2007¹$ We heat the aqueous dispersion containing CuS nanoplates $(0.25 \text{ mg} \text{ mL}^{-1})$ by 980 nm laser $(0.5 \text{ W} \text{ cm}^{-2})$ irradiation, until a steady state temperature was reached (Fig. S1). The highest temperature elevation was determined to be 22.3 °C at about 720 s. Subsequently, the laser was completely shut off, and the aqueous dispersion containing CuS nanoplates cools down naturally to environmental temperature. The photothermal conversion efficiency $({}^{\eta}T)$ can be calculated by using the equation (1):

$$
\eta_T = \frac{hS(T_{Max} - T_{Surr}) - Q_{Dis}}{P(1 - 10^{-A_{980}})}
$$
(1)

where T_{Max} is the equilibrium maximum temperature of the dispersion and T_{Surr} is the ambient temperature (26.0 °C), and the value ($T_{\text{Max}}-T_{\text{Surr}}$) was 22.3 °C (Fig. S1). *P* is the power of incident laser, and herein it is 0.125 W. In addition, A_{980} is the absorbance of aqueous dispersion of CuS nanoplates (0.25 mg mL-1) at wavelength 980 nm which

^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. E-mail: zgchen@dhu.edu.cn

^bCollege of Environmental Science and Engineering, Donghua University, Shanghai 201620, China. E-mail: lszhang@dhu.edu.cn

should match the irradiated depth of solution, and it can be determined to be 0.8. *h* is the heat transfer coefficient, *S* is the surface area of the container. The value of *hS* is calculated by the equation (2):

$$
\tau_s = \frac{\sum_i m_i C_{p,i}}{hS}
$$
 (2)

where τ_s is the system time constant which can be determined by the slope of the linear fitting between cooling time (*t*) and negative natural logarithm of driving force temperature (*-ln*θ), as shown in (Fig. S2). In our experiment τ_s is 356.4 s. m_i and $C_{p,i}$ represent the mass and heat capacity of system components (photothermal agent, solvent, quartz sample cell and so on)

and \overline{i} was determined to be 0.838 J °C⁻¹. Herein, the value of hS can be calculated to $\sum m_iC_{p,i}$ and ι be 0.00235 W °C -1 in the present case. *QDis* represents the heat dissipated from light absorbed by the quartz sample cell and solvent, it can be measured to be 0.0247 W by independently using the same sample cell containing pure water under the other identical conditions. Substituting all these data into equation (1), the photothermal conversion efficiency (η_T) can be calculated to be 26.4 %.

Fig. S**1** Temperature elevation of aqueous dispersion of CuS nanoplates (0. 25 mg mL-1) as a function of the time, under the irradiation of 980 nm laser with the intensity of 0.5 W cm⁻².

Fig. S**2** Linear fitting of the function between time and negative natural logarithm of driving force temperature (-lnθ) of CuS aqueous solution, corresponding to the cooling period of Fig.S1.

Notes and references

1. D. K. Roper, W. Ahn and M. Hoepfner, *J. Phys. Chem. C*, 2007, **111**, 3636-3641.