Supporting Information for ## Synthesis of CuS nanoplates-contained PDMS film with excellent near-infrared shielding property Wenjun Zhong,^a Nuo Yu,^a Lisha Zhang,^{*b} Zixiao Liu,^a Zhaojie Wang,^a Junqing Hu,^a and Zhigang Chen^{*a} ## The determination of photothermal conversion efficiency of CuS nanoplates The photothermal conversion efficiency of CuS nanoplates was measured by a classic solution method developed by Roper et al in 2007.¹ We heat the aqueous dispersion containing CuS nanoplates (0.25 mg mL⁻¹) by 980 nm laser (0.5 W cm⁻²) irradiation, until a steady state temperature was reached (Fig. S1). The highest temperature elevation was determined to be 22.3 °C at about 720 s. Subsequently, the laser was completely shut off, and the aqueous dispersion containing CuS nanoplates cools down naturally to environmental temperature. The photothermal conversion efficiency (η_T) can be calculated by using the equation (1): $$\eta_T = \frac{hS(T_{Max} - T_{Surr}) - Q_{Dis}}{P(1 - 10^{-A_{980}})}$$ (1) where T_{Max} is the equilibrium maximum temperature of the dispersion and T_{Surr} is the ambient temperature (26.0 °C), and the value (T_{Max} – T_{Surr}) was 22.3 °C (Fig. S1). P is the power of incident laser, and herein it is 0.125 W. In addition, A_{980} is the absorbance of aqueous dispersion of CuS nanoplates (0.25 mg mL⁻¹) at wavelength 980 nm which E-mail: <u>lszhang@dhu.edu.cn</u> ^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. E-mail: <u>zgchen@dhu.edu.cn</u> ^bCollege of Environmental Science and Engineering, Donghua University, Shanghai 201620, China. should match the irradiated depth of solution, and it can be determined to be 0.8. h is the heat transfer coefficient, S is the surface area of the container. The value of hS is calculated by the equation (2): $$\tau_{s} = \frac{\sum_{i} m_{i} C_{p,i}}{hS}$$ (2) where τ_s is the system time constant which can be determined by the slope of the linear fitting between cooling time (t) and negative natural logarithm of driving force temperature ($-ln\theta$), as shown in (Fig. S2). In our experiment τ_s is 356.4 s. m_i and $C_{p,i}$ represent the mass and heat capacity of system components (photothermal agent, solvent, quartz sample cell and so on) and i was determined to be 0.838 J $^{\circ}$ C⁻¹. Herein, the value of hS can be calculated to be 0.00235 W $^{\circ}$ C $^{-1}$ in the present case. Q_{Dis} represents the heat dissipated from light absorbed by the quartz sample cell and solvent, it can be measured to be 0.0247 W by independently using the same sample cell containing pure water under the other identical conditions. Substituting all these data into equation (1), the photothermal conversion efficiency ($^{\eta}_{T}$) can be calculated to be 26.4 %. **Fig. S1** Temperature elevation of aqueous dispersion of CuS nanoplates (0. 25 mg mL⁻¹) as a function of the time, under the irradiation of 980 nm laser with the intensity of 0.5 W cm⁻². Fig. S2 Linear fitting of the function between time and negative natural logarithm of driving force temperature ($-\ln\theta$) of CuS aqueous solution, corresponding to the cooling period of Fig.S1. ## Notes and references 1. D. K. Roper, W. Ahn and M. Hoepfner, *J. Phys. Chem. C*, 2007, **111**, 3636-3641.