Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

## **Supporting Information**

Synthesis, Crystal Structure and Physical Properties of  $FeV_4S_8$  and  $KFe_2V_8S_{16} \label{eq:KFe2V8S16}$ 

Lifang Sui,<sup>a,b</sup> Xian Zhang,<sup>c</sup> Zhangliu Tian,<sup>b</sup> Rongtie Huang, <sup>a,b</sup> Hui Zhang\*<sup>b</sup>, Jinjong Cheng,<sup>a</sup> Fuqiang Huang\*<sup>b,c</sup>

- <sup>a</sup> Department of Material Sciences and Engineering, Shanghai University, Shanghai 200444, P.R. China
- b CAS Key Laboratory of Materials for Energy Conversion and State Key Laboratory of High Performance Ceramics and SuperfineMicrostructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China. E-mail: huangfq@mail.sic.ac.cn.
- <sup>c</sup> Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.

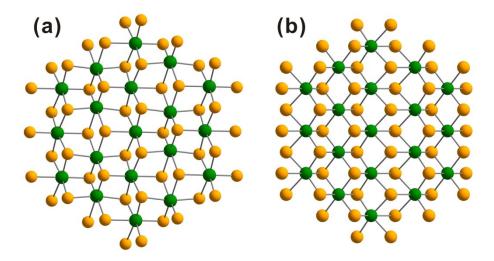
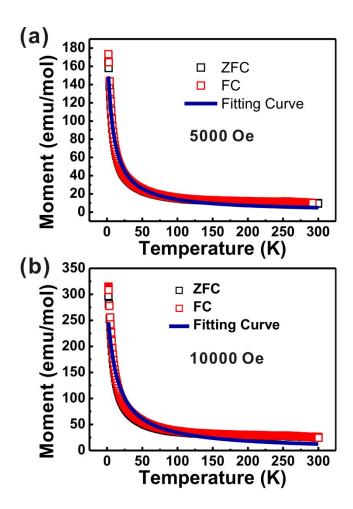




Figure S1. (a) The structure of the  $[V_4S_8]^{3-}$  layers in FeV<sub>4</sub>S<sub>8</sub>. (b) The structure of the  $[V_8S_{16}]^{7-}$  layers  $KFe_2V_8S_{16}$ .



**Figure S2**. Temperature-dependence of the magnetization of the  $FeV_4S_8$  compound under different external magnetic field (a) 5000 Oe and (b) 10000 Oe.

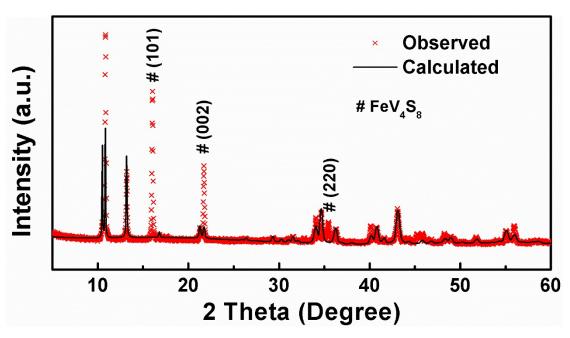



Figure S3. Powder XRD of the as-synthesized  $KFe_2V_8S_{16}$