Supplementary Information

Comb-shaped phenolphthalein-based poly (ether sulfone)s as anion exchange membranes for alkaline fuel cells

Chen Xiao Lin, Yi Zhi Zhuo, Ao Nan Lai, Qiu Gen Zhang, Ai Mei Zhu, Qing Lin Liu*

Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of

Chemical & Biochemical Engineering, The College of Chemistry and Chemical Engineering, Xiamen

University, Xiamen 361005, P. R. China

*Corresponding author:

Q.L. Liu, E-mail: qlliu@xmu.edu.cn, Tel: 86-592-2188072, Fax: 86-592-2184822

Fig. S1† The ¹H NMR spectra of PES in CDCl₃.

	NBS/-CH ₃ ^a	DB (%) ^b	DB (%) ^c	Yield (%)
PES-B20	0.2	20	18.6	88
PES-B40	0.4	40	35.6	91
PES-B60	0.6	60	49.8	90
PES-B80	0.8	80	66.4	90
PES-B100	1.0	100	82.4	82

Table S1[†] Results of the bromination of PES using different amounts of NBS.

^a Mole ratio; ^b theoretical value, which is calculated by the mole ratio of NBS to CH₃; ^c experimental value,

which is calculated from ¹H NMR spectrum.

Fig. S2[†] The ¹H NMR spectrum of PES-Bx in CDCl₃.

Fig. S3[†] The ¹H NMR spectrum of PES-B100-C16 in the bromine form in DMSO-d₆.

Fig. S4[†] The FT-IR spectra of PES, PES-B100, and PES-B100-C16.

Fig. S5[†] (a) Digital photo and SEM images: (b) cross-section (c) surface of the PES-B100-C16 membrane

Fig. S6[†] Arrhenius plots for the (a) in-plane and (b) through-plane conductivity of the AEMs

	DMF	DMAc	DMSO	NMP	methanol	ethanol	n-propanol
PES	+	+	+	+	-	-	-
PES-Bx ^a	+	+	+	+	-	-	-
PES-B60-C16	+	+	-	+	-	-	-
PES-B80-C16	+	+	-	+	-	-	-
PES-B100-C16	+	+	-	+	-	-	-

 Table S2[†]
 Solubility of comb-shaped PES-Bx-C16 membranes in commonly used solvents.

+ Soluble; - insoluble; ^a x=60, 80 and 100. PES-Bx-C16 is in hydroxide form. All of above were measured at room temperature.

Fig. S7[†] The FT-IR spectra of PES-B100-C16 (a) before and (b) after alkaline stability test

Table S3[†] Permeability of H₂ and O₂ through PES-B100-C16 in hydroxide form at 50 °C.

Fig. S8[†] Ohmic resistance of MEA using the PES-B100-C16 membrane