Electronic Supplementary Information (ESI) for the article

Powering tyrosol antioxidant capacity and osteogenic activity

by biocatalytic polymerization

Stefano Antenucci, Lucia Panzella,* Hermes Farina, Marco Aldo Ortenzi, Enrico Caneva, Simona

Martinotti, Elia Ranzato, Bruno Burlando, Marco d'Ischia, Alessandra Napolitano and Luisella

Verotta

Table of Contents

	page
Figure S1. Thermogravimetric analysis (TGA) of OligoTyr.	S2
Figure S2 . Non-aqueous size exclusion chromatography (SEC) profile of acetylated OligoTyr.	S3
Figure S3. ESI(-)MS spectrum of OligoTyr.	S4
Figure S4. MALDI spectrum of OligoTyr.	S5
Figure S5. Solid state CP-MAS ¹³ C NMR spectrum of tyrosol.	S6
Figure S6. Relative absorption of OligoTyr (top) and tyrosol (bottom) as a function of pH.	S7
Figure S7. SEM micrographs of PLA scaffolds prepared following method A (see main text).	S8
Figure S8. Release of OligoTyr from PLA scaffolds.	S9

Figure S1. Thermogravimetric analysis (TGA) of OligoTyr.

Mn =	2241
Mw =	2861
Mz =	4013
Mp =	2492
D =	1.277

Figure S2. Non-aqueous size exclusion chromatography (SEC) profile of acetylated OligoTyr and molecular weight distribution parameters. The peak at 46 min is due to *o*-dichlorobenzene used as internal standard. Detection set at 280 nm. Mn= number average molecular weight; Mw= weight average molecular weight; Mz= size average molecular weight; Mp= peak average molecular weight; D= polydispersity index.

Figure S3. ESI(-)MS spectrum of OligoTyr.

Figure S4. MALDI spectrum of OligoTyr.

Figure S5. Solid state CP-MAS ¹³C NMR spectrum of tyrosol.

Figure S6. Relative absorption of OligoTyr (top) and tyrosol (bottom) as a function of pH. The chosen wavelengths correspond to the absorption maximum of dissociated OligoTyr (325 nm) and tyrosol (293 nm).

Figure S7. Top: SEM micrographs of scaffolds obtained from pure PLA (left) and PLA + 5% OligoTyr (right) prepared following method A (see main text). Bottom: close-up of the scaffolds shown in the upper row. OligoTyr crystals are shown in the red circles.

Figure S8. Release of OligoTyr from PLA scaffolds at 5% loading in PBS. Reported are the mean \pm SD values of three experiments.