## **Supporting Information**

## Cobalt Oxide Nanoparticles on TiO<sub>2</sub> Nanorod/FTO as a Photoanode with Enhanced Visible Light Sensitization

Vivek Ramakrishnan,<sup>a</sup> Kim Hyun,<sup>a</sup> JucheolPark,<sup>b</sup> and Beelyong Yang<sup>\*a</sup>

a)School of Advanced Materials and System Engineering, Kumoh National of Institute of Technology,Gumi-si, Gyeongsangbuk-do, Republic of Korea.

b)Electronics & Information Technology Research Institute Gumi,17 Chomdangieop 1 St. Sandong, Gumi, Gyeongbuk, Republic of Korea.



**Figure SI 1**. (a) Images of electrodeposited Cobalt oxide on hydrothermally grown  $TiO_2/FTO$  by before and after annealing (b) EDS mapping of Cobalt oxide nanoparticle on  $TiO_2$ nanorod/FTO



**Figure SI 2.** EELS spectrum of Cobalt oxide nanoparticle on TiO<sub>2</sub> nanorod/FTO annealed in air at (a), (b), (c)  $500^{\circ}$ C (d)  $600^{\circ}$ C



**Figure SI 3.** TEM image, Lattice-fringe, and SAED pattern of Cobalt oxides nanoparticles on  $TiO_2$ nanorod with (a), (b), and (c) 20 seconds, (d), (e), and (f) 40 seconds and (g), (h), and (i) 60 seconds of electrodeposition time and annealing at 500<sup>o</sup>C in air.



**Figure SI 4.** (a),(b), (c), (d), (e), and (f) TEM images of Cobalt oxides nanoparticles on  $TiO_2$ nanorod with annealing temperature of 700°C, 600°C, 500°C, 400°C, 375°C and 350°Crespectively in air.



**Figure SI 5.** Lattice fringe TEM images and SAED patterns of Cobalt oxides nanoparticles on  $TiO_2$  nanorod with annealing temperature of 600<sup>o</sup>C, 500<sup>o</sup>C, 400<sup>o</sup>C and 375<sup>o</sup>C respectively in air.



**Figure SI 6.** TEM images of Cobalt oxides nanoparticles on  $TiO_2$  nanorod with annealing temperature of 700°C, 600°C, 500°C, 400°C, 375°C, and 350°C respectively in N<sub>2</sub>.



**Figure SI 7.** Lattice fringe TEM images and SAED pattern of Cobalt oxides nanoparticles on  $TiO_2$  nanorod with annealing temperature of 600°C, 500°C, 400°C and 375°C respectively in N<sub>2</sub>.



**Figure SI 8.** Relation between particle size with respect to electrodeposition time of Cobalt and its oxide formed on  $TiO_2$  nanorods.



**Figure SI 9.** Comparison of photocurrent density-voltage diagram of Cobalt oxide/TiO<sub>2</sub> nano-structure and TiO<sub>2</sub> nanorod on FTO in 0.1 M Na<sub>2</sub>S aqueous solution with light intensity 100 mW/cm<sup>-2</sup> annealed in air with various electrodeposition time of 20, 40, and 60 seconds (a) white light (b) visible light.



**Figure SI 10.** Comparison of photocurrent density-voltage diagram of Cobalt oxide/TiO<sub>2</sub> nanostructure and TiO<sub>2</sub> nanorod on FTO in 0.1 M Na<sub>2</sub>S aqueous solution with light intensity 100 mW/cm<sup>-2</sup>annealed in air and nitrogen at 600°C, 400°C, and 350°C.



**Figure SI 11.** Comparison of photocurrent density-voltage diagram of Cobalt oxide/TiO<sub>2</sub> nanostructure to that of bare Cobalt oxide and TiO<sub>2</sub> nanorod on FTO in 0.1 M Na<sub>2</sub>S aqueous solution with light intensity 100 mW/cm<sup>-2</sup> annealed in air at 500<sup>o</sup>C (a) white light (b) visible light.



**Figure SI 12.** Photocurrent density kinetics of Cobalt oxide/TiO<sub>2</sub>/FTO and TiO<sub>2</sub>/FTO with biased ( $V_B = 0.5$  V vs Ag/AgCl) electrodes in 0.1 M Na<sub>2</sub>S (pH = 12. 5) solution under white light irradiation (100 mW/cm<sup>2</sup>).