Electronic Supplementary Information (ESI)

Hierarchical zinc oxide nano-tips and micro-rod: Hydrothermal synthesis and improved chemi-resistive response towards ethanol

P. Das^{a,b}, B. Mondal^{a,b}, K. Mukherjee^{a*}

^aCentre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur-713209, India

^bAcademy of Scientific and Innovative Research, CSIR-Central Mechanical Engineering Research Institute, Durgapur-713209, India

*Corresponding Author, Email: kalisadhanm@yahoo.com; k_mukherjee@cmeri.res.in

hydrothermally prepared spherical carbon template

Description: The formation of the carbon spheres involves the dehydration and subsequent carbonization of dextrose. Due to non- or just partially dehydrated dextrose, the surface of the spheres contains OH and C=O groups.^[1] As shown in the Figure, the broad band at 3500-3650 cm⁻¹ is attributed to O-H (hydroxyl) vibration. The band at 2924 cm⁻¹ is due to asymmetric C-H stretching of aliphatic groups. C–OH stretching and bendinng vibration are observed at 1000-1300 cm⁻¹. The bands at 1,704 and 1,618 cm⁻¹ are attributed to C=O vibration and in-plane C=C stretching vibration of aromatic ring respectively.^[1-2]

- 1. X. Sun, Y. Li, Colloidal carbon spheres and their core/shell structures with noblemetal nanoparticles, Angew. Chem. Int. Ed. 43 (2004) 597-601.
- Y. Z. Jin, C. Gao, W. K. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C. Y. Lee, S. Acquah, H. Kroto, David R.M. Walton, Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons, Carbon 43 (2005) 1944-1953.

Figure S2: (a) Point scanning on ZnO nano-tips and (b) corresponding EDS spectrum; inset table summarizes the weight and atomic % of Zn and O obtained from EDS spectrum of ZnO nano-tips (c) Point scanning on ZnO micro-rod and (d) corresponding EDS spectrum; inset table summarizes the weight and atomic % of Zn and O obtained from EDS spectrum of ZnO micro-rod.

Description: The compositions of the nano-tips as well as micro-rod are separately studied using the energy dispersive X-ray spectroscopy (EDS) facility associated with the FESEM instrument. Compositional analyses using point scanning mode exhibit that the zinc (Zn) and oxygen (O) ratio is higher for micro-rod than nano-tips which further supports that the crystallinity of the micro-rod is better than the nano-tips.

Figure S3: N2 adsorption-desorption isotherms of (a) A-I and (b) A-II derived ZnO products

Description: The surface area of the products derived from A-I and A-II are estimated from the N₂ adsorption-desorption isotherm shown in the figure. The estimated surface area of product derived from A-II (7.2 m² g⁻¹) is found considerably higher than the product derived from A-I ($3.9 \text{ m}^2 \text{ g}^{-1}$).

Figure S4: XRD pattern of prepared hierarchical ZnO

Description: Figure S4 represents the X-ray diffraction pattern of ZnO hierarchical structure. The XRD pattern is in good agreement with the JCPDS Card No. 03-0888. The XRD pattern recorded under CoKa radiation (PW 3040/60, Panalytical, Netherland).