## Two-dimensional Germanane and Germanane Ribbons: Density Functional Calculation of Structural, Electronic, Optical and Transport Properties and the Role of Defects

Jun Zhao,<sup>*a,c*</sup> Hui Zeng,<sup>*b,c*†</sup>

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

## 1 MD Simulation

We have carried out *ab initio* molecular dynamics (AIMD) simulations by using canonical ensemble (NVT), which is implemented in the Vienna *ab initio* Simulation Package (VASP)<sup>1</sup>. The  $4 \times 4$  2D sheet is simulated for 5 picosecond (ps) with a time step of 2 femtosecond (fs). The MD calculations were performed at a temperature of 300K for the initially optimized nanostructures at T = 0K. The nonspin polarized generalized gradient approximation (GGA) in the form of Perdew-Burke-Ernzerhof (PBE) is used for the exchange-correlation potential<sup>2</sup>. The projector augmented wave (PAW) method and a plane wave basis set with 400eV energy cutoff. The convergence criterion of the total energy is set as  $10^{-4}eV$ . The temperature control is realized by means of Nosé thermostat<sup>3</sup>.

The thermal stability of the three nanostructures, i.e., the pristine germanane sheet and the defective germanane with H monovacancy and the defective germanane with Ge adatom, have been investigated. For the three nanostructures mentioned above, it is found that their total energy fluctuations are very small, maintaining in a almost horizontal line. Thus, the MD simulation confirms that all nanostructure under consideration are thermally stable at room temperature.

## References

- 1 G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 2 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865– 3868.

<sup>a</sup> School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.



**Fig. 1** (Color Online) Total energy fluctuation during AIMD simulations performed at 300K for the (a) pristine germanane sheet and (b) defective germanane with H monovacancy and (c) defective germanane with Ge adatom. The snapshots at the end of simulation are shown in the inset.

3 Nosé, J. Chem. Phys., 1984, 81, 511-519.

<sup>&</sup>lt;sup>b</sup> School of Physics, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.

<sup>&</sup>lt;sup>c</sup> School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, Hubei, China.

<sup>†</sup> Corresponding author. E-mail address: zenghui@yangtzeu.edu.cn