SUPPORTING INFORMATION

Synthesis of the Pentasaccharide Moiety of Starfish Asterosaponin Luidiaquinoside and its Conformational Analysis

Geeta Karki, ${ }^{\text {a }}$ Harikesh Kumar, ${ }^{\text {a,b }}$ Gajendra Singh, ${ }^{\text {b,c }}$ Ravi Sankar Ampapathi, ${ }^{\text {b,c }}$ and Pintu Kumar Mandal ${ }^{*, a, b}$
${ }^{a}$ Medicinal and Process Chemistry Division, ${ }^{b}$ Academy of Scientific and Innovative Research New Delhi-110001 (India) and ${ }^{c}$ NMR Centre, SAIF, CSIR-Central Drug Research Institute, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India.

*Email: pintuchem06@gmail.com

$$
\text { Tel.: +91-522-2772450 extn 4657; fax: +91 } 5222623405
$$

Index

Contents

1. ${ }^{1} \mathrm{H}, 2 \mathrm{D}-\mathrm{TOCSY}$ and 2D-ROESY HSQC, HMBC, ${ }^{13} \mathrm{C}$ spectra
2. Molecular dynamics study
3. References

List of Figures

Figure No	Figure Title	$\begin{gathered} \hline \text { Page } \\ \text { No } \end{gathered}$
Figure 1	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$	6
Figure 2	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$	6
Figure 3	${ }^{13} \mathrm{C}$ Dept-135 ${ }^{\circ}$ spectrum of compound $1\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right.$)	7
Figure 4	2D-COSY spectrum of compound $1\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$	7
Figure 5	2D-TOCSY spectrum of compound $1\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$	8
Figure 6	2D-ROESY spectrum ofcompound $\mathbf{1}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$	8
Figure 7	2D-HSQC spectrum ofcompound $1\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$	9
Figure 8	2D-HMBC spectrum ofcompound $1\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$	9
Figure 9	HMBC and ROESY- correlation of compound 1	10
Figure 10	${ }^{1} \mathrm{H}$ spectrum of compound $2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	10
Figure 11	${ }^{13} \mathrm{C}$ spectrum of compound $2\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	11
Figure 12	${ }^{13} \mathrm{C}$ Dept-135 ${ }^{\circ}$ Spectrum of compound $2\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	11
Figure 13	${ }^{1} \mathrm{H}$ spectrum of compound $5\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	12
Figure 14	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{5}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	12
Figure 15	${ }^{13} \mathrm{CDept}-135^{\circ}$ Spectrum of compound 5 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	13
Figure 16	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{9}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	13
Figure 17	${ }^{13} \mathrm{C}$ spectrum of compound $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	14
Figure 18	${ }^{13} \mathrm{CDept}-135^{\circ}$ spectrum of compound $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	14
Figure 19	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 0}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	15
Figure 20	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 0}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	15
Figure 21	${ }^{13} \mathrm{CDept-135}{ }^{\circ}$ spectrum of compound 10 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	16
Figure 22	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	16
Figure 23	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	17
Figure 24	${ }^{13} \mathrm{CDept}-135^{\circ}$ spectrum ofcompound11 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	17
Figure 25	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	18

Figure 26	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 2}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	18
Figure 27	${ }^{13} \mathrm{CDept}-135^{\circ}$ spectrum ofcompound $12\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	19
Figure 28	2D-COSY spectrum (selected regions) of compound 12 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	19
Figure 29	2D- HSQC spectrum(selected regions) of compound 12 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	20
Figure 30	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	20
Figure 31	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 3}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	21
Figure 32	${ }^{13} \mathrm{CDept}-135^{\circ}$ spectrum ofcompound13 (100 MHz, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	21
Figure 33	2D-COSY spectrum (selected regions) of compound 13 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	22
Figure 34	2D- HSQC spectrum (selected regions) of compound $\mathbf{1 3}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	22
Figure 35	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	23
Figure 36	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 4}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	23
Figure 37	${ }^{13} \mathrm{CDept}-135^{\circ}$ spectrum ofcompound14 (100 MHz, $\mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	24
Figure 38	2D- HSQC spectrum (selected regions) of compound $14\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300\right.$	24
Figure 39	2D-HSQC spectrum (selected regions) of compound 14 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	25
Figure 40	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 5}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	25
Figure 41	${ }^{13} \mathrm{C}$ spectrum of compound 15 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	26
Figure 42	${ }^{13} \mathrm{C}$ Dept-135 ${ }^{\circ}$ spectrum ofcompound 15 ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	26
Figure 43	2D- COSY spectrum (selected regions) of compound 15 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	27
Figure 44	2D- HSQC spectrum (selected regions) of compound 15 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	27
Figure 45	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 6}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	28
Figure 46	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 6}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	28
Figure 47	${ }^{13} \mathrm{CDept-135}{ }^{\circ}$ spectrum of compound $\mathbf{1 6}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	29
Figure 48	2D- COSY spectrum (selected regions) of compound 16 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	29
Figure 49	2D- HSQC spectrum (selected regions) of compound 16 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	30
Figure 50	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 7}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	30
Figure 51	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 7}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	31
Figure 52	${ }^{13} \mathrm{CDept-} 135^{\circ}$ spectrum of compound $17\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	31
Figure 53	2D- COSY spectrum (selected regions) of compound 17 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)	32

Figure 54	2D- HSQC spectrum (selected regions) of compound $\mathbf{1 7}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	32
Figure 55	${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 8}(500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$	33
Figure 56	${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 8}(125 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$	33
Figure 57	${ }^{13} \mathrm{C}$ Dept- 135° spectrum of compound $\mathbf{1 8}(125 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$	34
Figure 58	2D-HSQC spectrum of compound 18 ($500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K}$)	34
Figure 59	2D- HMBC spectrum of compound 18 ($500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K}$)	35
Figure 60	2D- COSY spectrum of compound $\mathbf{1 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$	35
Figure 61	2D -TOCSY spectrum of compound $\mathbf{1 8}$ ($500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K}$)	36
Figure 62	2D- ROESY spectrum of compound $\mathbf{1 8}$ ($500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K}$)	36
Figure 63	HMBC and ROESY- correlation of compound $\mathbf{1 8}$	37
Figure 64	Stereo view of the 20 superimposed least energy conformations of compound1	39
Figure 65	Stereo view of the 15 superimposed least energy conformations of compound18	41

List of Tables

Table no.	Table title	Page no
Table S1	${ }^{1} \mathrm{H}$ and $\mathrm{C}^{13} \mathrm{NMR}$ chemical shifts $(\delta$ in ppm$)$ and coupling constants $(J$ in Hz$)$ for compound $\mathbf{1}\left(500 \mathrm{MHz} 300 \mathrm{~K}, \mathrm{D}_{2} \mathrm{O}\right)$	37
Table S2	1 H and $\mathrm{C}^{13} \mathrm{NMR}$ chemical shifts $(\delta$ in ppm $)$ and coupling constants $(J$ in Hz) for compound $\mathbf{1 8}\left(500 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$	38
Table S3	Distance constraints used in the MD calculation for compound 1, derived from ROESY experiment in $\mathrm{D}_{2} \mathrm{O}(500 \mathrm{MHz}, 300 \mathrm{~K})$	39
Table S4	Torsional angle ϕ and Ψ of glycosidic linkage of compound $\mathbf{1}$	40
Table S5	Distance constraints used in MD calculation for compound $\mathbf{1 8}$ derived from ROESY experiment in $\mathrm{CDCl} l_{3}(500 \mathrm{MHz}, 300 \mathrm{~K})$	40
Table S6	Torsional angle ϕ and Ψ of glycosidic linkage of compound $\mathbf{1 8}$	41

Solution conformational Studies:

NMR data were acquired on Bruker Avance-III HD 500 MHz NMR spectrometer and Agilent-DD2 700 MHz NMR spectrometer at $300{ }^{\circ} \mathrm{K}$ and $298{ }^{\circ} \mathrm{K}$ respectively in suitable solvents. Resonance assignments were carried out using Two-Dimensional ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{1}$ TOCSY, ${ }^{2}$ ROESY ${ }^{3}$ and indirect detection experiments like ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC, HMBC. All NMR data were processed using TopSpin3.2. Proton spectra were acquired with 16 to 32 transients with 16 K points zero filled to 32 k data points. $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ TOCSY and ROESY were acquired with 2 k complex data points in F2 and 128 to 256 in F1 dimension with a relaxation delay of 2 s between transients was used for all experiments. The 2D TOCSY NMR data were acquired with a spin-lock time of 80 ms . 2D ROESY NMR data were acquired with a mixing time of 200 ms . Water suppression was carried out using presaturation and excitation sculpting techniques. Data were processed using standard apodizing functions prior to Fourier transformation. 2D $1 \mathrm{H}-13 \mathrm{C}$ HSQC NMR data were acquired, with 13C decoupling during the acquisition period, over an F 2 frequency width of 12 ppm into 2 k complex data points. 16 to 32 transients were accumulated for each of 128 t 1 increments over an F1 frequency width of 200 ppm centered at 100 ppm . Phase sensitive data were acquired in a sensitivityimproved manner using an echo-anti-echo acquisition mode. 2D $1 \mathrm{H}-13 \mathrm{C}$ HMBC NMR data were acquired over an F2 frequency width of 12 ppm into 2 k complex data points. 32 to 64 transients were accumulated for each of 128 t 1 increments over an F1 frequency width of 200 ppm centered at 100 ppm .

Figure 1: ${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$

Figure 2: ${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1}\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$

Figure 3: ${ }^{13} \mathrm{CDept}-135^{\circ}$ Spectrum ofcompound $\mathbf{(1 2 5 \mathrm { MHz } , \mathrm { D } _ { 2 } \mathrm { O } , 3 0 0 \mathrm { K })}$

Figure 4:2D- COSY Spectrum ofcompound $1\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$

Figure5:2D-TOCSY spectrum ofcompound $\mathbf{1}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$

Figure 6: 2D-ROESY spectrum ofcompound $\mathbf{1}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$

Figure 7:2D-HSQC spectrum ofcompound $1\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$

Figure 8: 2D-HMBC spectrum of compound $\mathbf{1}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 300 \mathrm{~K}\right)$

HMBC- correlation of $\mathbf{1}$

ROESY - correlation of $\mathbf{1}$

Figure9: HMBC and ROESY correlation of compound 1

Figure 10: ${ }^{1} \mathrm{H}$ spectrum of compound $2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 11: ${ }^{13} \mathrm{C}$ spectrum of compound $2\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Figure 12: ${ }^{13} \mathrm{C}$ Dept- 135° spectrum of compound $2\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 13: ${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{5}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 14: ${ }^{13} \mathrm{C}$ spectrum of compound $5\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure15: ${ }^{13} \mathrm{CDept}-135^{\circ}$ spectrum of compound $5\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 16: ${ }^{1} \mathrm{H}$ spectrum of compound $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 17: ${ }^{13} \mathrm{C}$ spectrum of compound $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

$\stackrel{8}{-1}$

Figure 18: ${ }^{13} \mathrm{CDept}-135^{\circ}$ Spectrum of compound $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 19: ${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 0}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 20: ${ }^{13} \mathrm{CSpectrum}$ of compound $\mathbf{1 0}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

Figure21: ${ }^{13} \mathrm{CDept-} 135^{\circ}$ Spectrum of compound $\mathbf{1 0}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure22: ${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

$\stackrel{\text { ๙ }}{\substack{\infty \\ \vdots}}$

Figure 23: ${ }^{13} \mathrm{CSpectrum}$ of compound $\mathbf{1 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 24: ${ }^{13} \mathrm{CDept}-135^{\circ}$ Spectrum of compound $\mathbf{1 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 25: ${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 26: ${ }^{13} \mathrm{CSpectrum}$ of compound $\mathbf{1 2}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 27: ${ }^{13} \mathrm{CDept-} 135^{\circ}$ Spectrum of compound $12\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 28: 2D-COSY spectrum (selected regions) of compound 12 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K)

Figure 29: 2D- HSQC spectrum (selected regions) of compound 12 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K)

Figure30: ${ }^{1} \mathrm{H}$ spectrum of compound 13 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)

Figure 31: ${ }^{13} \mathrm{CSpectrum}$ of compound $13\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 32: ${ }^{13} \mathrm{CDept}-135^{\circ}$ spectrum of compound $\mathbf{1 3}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 33: 2D-COSY spectrum (selected regions) of compound $\mathbf{1 3}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K)

Figure 34: 2D- HSQC spectrum (selected regions) of compound $13\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300\right.$ K)

Figure35: ${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 36: ${ }^{13} \mathrm{CSpectrum}$ of compound $14\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 37: ${ }^{13} \mathrm{CDept}-135{ }^{\circ}$ Spectrum of compound14 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$)

Figure 38: 2D- HSQC spectrum (selected regions) of compound $14\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300\right.$ K)

Figure 39: 2D-HSQC spectrum (selected regions) of compound 14 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K)

Figure $40:{ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 5}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 41: ${ }^{13} \mathrm{CSpectrum}$ of compound $\mathbf{1 5}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 42: ${ }^{13} \mathrm{CDept}-135^{\circ}$ Spectrum of compound $\mathbf{1 5}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 43: 2D- COSY spectrum (selected regions) of compound $15\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300\right.$ K)

Figure44: 2D- HSQC spectrum (selected regions) of compound $\mathbf{1 5}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K)

Figure $45:{ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 6}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 46: ${ }^{13} \mathrm{CSpectrum}$ of compound $16\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 47: ${ }^{13} \mathrm{CDept-} 135^{\circ}$ Spectrum of compound $\mathbf{1 6}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure48: 2D- COSY spectrum (selected regions) of compound 16 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K)

Figure49: 2D- HSQC spectrum (selected regions) of compound 16 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K)

Figure50: ${ }^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 7}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 51: ${ }^{13} \mathrm{CSpectrum}$ of compound $\mathbf{1 7}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 52: ${ }^{13} \mathrm{CDept}-135^{\circ}$ Spectrum of compound $17\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure53: 2D- COSY spectrum (selected regions) of compound 17 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300$ K)

Figure54: 2D- HSQC spectrum (selected regions) of compound $\mathbf{1 7}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300\right.$ K)

Figure $\mathbf{5 5} \mathbf{:}^{1} \mathrm{H}$ spectrum of compound $\mathbf{1 8}(500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\right) \mathrm{ppm}$
Figure 56: ${ }^{13} \mathrm{C}$ spectrum of compound $\mathbf{1 8}(125 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$

Figure 57: ${ }^{13} \mathrm{C}$ Dept- 135° spectrum of compound $\mathbf{1 8}(125 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$

Figure 58: 2D-HSQC Spectrum of compound $18(500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$

Figure 59: 2D- HMBC spectrum of compound $\mathbf{1 8}(500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$

Figure 60: 2D- COSY spectrum of compound $\mathbf{1 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$

Figure 61: 2D -TOCSY spectrum of compound $\mathbf{1 8}(500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K})$

Figure 62: 2D- ROESY spectrum of compound 18 ($500 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K}$)

HMBC- correlation of $\mathbf{1 8}$

ROESY correlations of $\mathbf{1 8}$

Figure 63: HMBC and ROESY- correlation of compound 18

Table S1: ${ }^{1} \mathrm{H}$ and C^{13} NMR chemical shifts (δ in ppm) and coupling constants (J in Hz) forcompound $\mathbf{1}\left(500 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{D}_{2} \mathrm{O}\right.$)

$\underbrace{\text { Ring }}_{\text {Protons }}$	A	B	C	D	E
$\mathrm{C}_{1} \mathrm{H}$	$\begin{aligned} & 5.47\left(\mathrm{H}-1_{\mathrm{A}}, d,{ }^{3} J_{\mathrm{C} 1 \mathrm{H}-}\right. \\ & \left.\mathrm{C}_{2}=3.6\right) \end{aligned}$	$\begin{aligned} & 4.73\left(\mathrm{H}-1_{\mathrm{B}}, d,{ }^{3} J_{\mathrm{C} 1 \mathrm{H}-}\right. \\ & \mathrm{C} 2 \mathrm{H}=8.3) \end{aligned}$	$\begin{aligned} & 4.68\left(\mathrm{H}-1_{\mathrm{C}}, d,{ }^{3} J_{\mathrm{C} 1 \mathrm{H}-}\right. \\ & \mathrm{C} 2 \mathrm{H}=7.4) \end{aligned}$	$\begin{aligned} & 4.61\left(\mathrm{H}-1_{\mathrm{D}}, d,\right. \\ & \left.{ }^{3} J_{\mathrm{C} 1 \mathrm{H}-\mathrm{C} 2 \mathrm{H}}=7.8\right) \end{aligned}$	$\begin{aligned} & 4.53\left(\mathrm{H}-1_{\mathrm{E}}, d,\right. \\ & \left.{ }^{3} J_{\mathrm{C} 1 \mathrm{H}-\mathrm{C} 2 \mathrm{H}}=7.9\right) \end{aligned}$
$\mathrm{C}_{2} \mathrm{H}$	$\begin{aligned} & 3.90,\left(\mathrm{H}-2_{\mathrm{A}}, d d,{ }^{3} J_{\mathrm{C} 2 \mathrm{H}-}\right. \\ & \mathrm{C} 3 \mathrm{H}=3.6,9.1) \end{aligned}$	$\begin{aligned} & 3.55,\left(\mathrm{H}-2_{\mathrm{B}}, d d,{ }^{3} J_{\mathrm{C} 2 \mathrm{H}-}\right. \\ & \mathrm{C} 3 \mathrm{H}=8.1,7.5) \end{aligned}$	3.29, (H-2 ${ }_{\text {C }}, m$)	3.46 (H-2 $\left.{ }_{\text {D }}, m\right)$	$\begin{aligned} & 3.50\left(\mathrm{H}-2_{\mathrm{E}}, d d,\right. \\ & { }^{3} J_{\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{H}}=7.9, \\ & 8.1) \\ & \hline \end{aligned}$
$\mathrm{C}_{3} \mathrm{H}$	$\begin{aligned} & 3.28\left(\mathrm{H}-3_{\mathrm{A}}, t,{ }^{3} J_{\mathrm{C} 3 \mathrm{H}}\right. \\ & \mathrm{C} 4 \mathrm{H}=8.9) \end{aligned}$	$\begin{aligned} & 3.80\left(\mathrm{H}-3_{\mathrm{B}}, d d,{ }^{3} \mathrm{~J}_{\mathrm{C} 3 \mathrm{H}-}\right. \\ & \mathrm{C} 4 \mathrm{H}=8.1,5.3) \end{aligned}$	3.42, (H-3 ${ }_{\text {C }}, m$)	$\begin{aligned} & 3.60\left(\mathrm{H}-3_{\mathrm{D}}, d d,\right. \\ & { }^{3} J_{\mathrm{C} 3 \mathrm{H}-\mathrm{C} 4 \mathrm{H}}=9.7, \\ & 3.8) \\ & \hline \end{aligned}$	3.59 ($\left.\mathrm{H}-3_{\mathrm{E}}, m\right)$
$\mathrm{C}_{4} \mathrm{H}$	3.89 ($\left.\mathrm{H}-4_{\mathrm{A}}, m\right)$	$3.61\left(\mathrm{H}-4_{\mathrm{B}}, m\right)$	$\begin{aligned} & 3.11,\left(\mathrm{H}-4_{\mathrm{C}}, d d,{ }^{3} J_{\mathrm{C} 4 \mathrm{H}-}\right. \\ & \mathrm{C} 5 \mathrm{H}=6.1,4.5) \end{aligned}$	$\begin{aligned} & 3.47\left(\mathrm{H}-4_{\mathrm{D}}, d d,\right. \\ & { }^{3} J_{\mathrm{C} 4 \mathrm{C}-\mathrm{C} 5 \mathrm{H}}=6.1, \\ & 3.8) \end{aligned}$	$\begin{aligned} & 3.14\left(\mathrm{H}-4_{\mathrm{E}}, t,\right. \\ & 9.27) \end{aligned}$
$\mathrm{C}_{5} \mathrm{H}$	3.89 (H-5 $\left.{ }_{\text {A }}, m\right)$	3.57 (H-5 $\left.{ }_{\text {B }}, m\right)$	$\begin{aligned} & 3.49,\left(\mathrm{H}-5_{\mathrm{C}}, d d,\right. \\ & \left.{ }^{3} J_{\mathrm{C} 5 \mathrm{H}-\mathrm{CH} 3}=6.3,4.6\right) \end{aligned}$	$\begin{aligned} & 3.68\left(\mathrm{H}-5_{\mathrm{D}}, d d,\right. \\ & { }^{3} J_{\mathrm{CSH}-\mathrm{CH} 3}=6.1, \\ & 6.5) \end{aligned}$	3.44 (H-5E, m)
CH_{3}	$\begin{aligned} & 1.18\left(3 \mathrm{H}, d, 3, J_{\mathrm{CH}-\mathrm{CH} 3}=\right. \\ & 6.7) \end{aligned}$	-	$\begin{aligned} & 1.28\left(3 \mathrm{H}, d,{ }^{3} J_{\mathrm{CSH}-}\right. \\ & \left.\mathrm{CH}_{3}=6.3\right) \end{aligned}$	$\begin{aligned} & 1.19\left(3 \mathrm{H}, d,{ }^{3} J_{\mathrm{C} 5 \mathrm{H}-}\right. \\ & \left.\mathrm{CH}^{2}=6.5\right) \end{aligned}$	$\begin{aligned} & 1.25\left(3 \mathrm{H}, d,{ }^{3} J_{\mathrm{CSH}}\right. \\ & \left.\mathrm{CH}_{3}=6.4\right) \end{aligned}$
Carbons	$\begin{aligned} & \mathrm{C}-1_{\mathrm{A}}=97.27, \\ & \mathrm{C}-2_{\mathrm{A}}=84.36, \\ & \mathrm{C}-3_{\mathrm{A}}=73.43 \\ & \mathrm{C}-4_{\mathrm{A}}=68.57 \\ & \mathrm{C}-5_{\mathrm{A}}=70.91 \\ & \mathrm{Me}-\mathrm{C}=16.60 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1_{\mathrm{B}}=101.92, \\ & \mathrm{C}-2_{\mathrm{B}}=81.93, \\ & \mathrm{C}-3_{\mathrm{B}}=74.15 \\ & \mathrm{C}-\mathrm{4}_{\mathrm{B}}=72.73 \\ & \mathrm{C}-\mathrm{S}_{\mathrm{B}}=74.83 \\ & \mathrm{CH} 2-\mathrm{C}=60.09 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1_{\mathrm{C}}=103.69, \\ & \mathrm{C}-2_{\mathrm{C}}=74.11, \\ & \mathrm{C}-3_{\mathrm{C}}=74.98 \\ & \mathrm{C}-4_{\mathrm{C}}=74.74 \\ & \mathrm{C}-5_{\mathrm{C}}=72.25 \\ & \mathrm{Me}-\mathrm{C}=16.62 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1_{\mathrm{D}}=103.49 \\ & \mathrm{C}-2_{\mathrm{D}}=71.65 \\ & \mathrm{C}-3_{\mathrm{D}}=74.98 \\ & \mathrm{C}-4_{\mathrm{D}}=73.43 \\ & \mathrm{C}-5_{\mathrm{D}}=68.57 \\ & \mathrm{Me}-\mathrm{C}=16.54 \end{aligned}$	$\begin{aligned} & \mathrm{C}-1_{\mathrm{E}}=100.93, \\ & \mathrm{C}-2_{\mathrm{E}}=80.78, \\ & \mathrm{C}-3_{\mathrm{E}}=72.73 \\ & \mathrm{C}-4_{\mathrm{E}}=74.74 \\ & \mathrm{C}-5_{\mathrm{E}}=71.77 \\ & \mathrm{Me}-\mathrm{C}=16.64 \end{aligned}$
Others:- H1 $=3.75, s \mathrm{H}_{3}, \mathrm{H}^{\prime}{ }^{\prime}=7.07 \mathrm{~d}, J=8.9 \mathrm{H} 4, \mathrm{H}^{\prime}=6.94, \mathrm{~d}, J=8.9$; Carbons: $\mathrm{C} 1=55.82, \mathrm{C} 2=154.80, \mathrm{C} 3, \mathrm{C} 3$ ' $=118.97$ $\mathrm{C} 4, \mathrm{C} 4{ }^{\prime}=115.11, \mathrm{C} 5=149.9 ; \mathrm{B}^{-C H} 2^{\mathrm{a}}=3.85\left(1 \mathrm{H}, d d^{3} J_{\mathrm{C} 5 \mathrm{CH}}=13.7,9.1\right) ; \mathrm{B}-\mathrm{CH} 2^{\mathrm{b}}=4.01\left(1 \mathrm{H}, d d, J_{\mathrm{C} 5-\mathrm{CH} 3}=13.7,7.8\right)$					

Table S2: ${ }^{1} \mathrm{H}$ and C^{13} NMR chemical shifts (δ in ppm) and coupling constants (J in Hz) forcompound 18 ($500 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{CDCl}_{3}$)

| Ring | \mathbf{A} | \mathbf{c} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Proton | | |

Others:- $\mathrm{H} 1=3.79$, $\mathrm{s}, \mathrm{CH} 2,4.82(1 \mathrm{Ha}, m), 4.75,(1 \mathrm{Hb}, m) \mathrm{H} 3, \mathrm{H} 3{ }^{\prime}=6.89 d, J=8.89, \mathrm{H} 4, \mathrm{H} 4{ }^{\prime}=6.80, d, J=8.89$:
Carbons : $\mathrm{C} 1=55.64, \mathrm{C} 2=155.00, \mathrm{C} 3, \mathrm{C}^{\prime}{ }^{\prime}=118.29, \mathrm{C} 4, \mathrm{C} 4{ }^{\prime}=114.55, \mathrm{C} 5=150.93$

Molecular Dynamics Study:-

Energy minimization and molecular dynamics (MD) calculations were performed on Discovery studio 3.0 version, using CHARMm ${ }^{4}$ force field with default parameters throughout the simulation. Distance restraints used in the simulated molecular dynamics were calculated from the volume integrals of the cross peaks in the ROESY spectra using two-spin approximation with a reference distance of $1.80 \AA$ for the geminal protons. Force constant of $10 \mathrm{~K} \mathrm{cal} / \AA, 5 \mathrm{~K} \mathrm{cal} / \AA$ and $30 \mathrm{~K} \mathrm{cal} / \AA$ were used for distance, torsional and H-bonding restraints respectively. Minimization was done with steepest descent algorithm followed by conjugate gradient methods for maximum 1000 iterations each. The molecules were initially equilibrated for 5 pS and then subjected to 1 nS production run. Starting from 50 K , they were heated to 300 K in five steps increasing the temperature 50 K at each step. 20 structures were stored from the production run and are again energy minimized with the above mentioned protocol.

Table S3: Distance constraints used in the MD calculation for compound 1, derived from ROESY experiment in $\mathrm{D}_{2} \mathrm{O}(500 \mathrm{MHz}, 300 \mathrm{~K})$

Residue	Atom	Residue	Atom	Upper bond	Lower bond
A	CH3	Ar	H-3	5.9	4.8
A	H-1	Ar	H-3	3.58	2.93
A	CH3	A	H-1	4.42	3.61
A	CH3	A	H-2	3.08	2.52
A	H-1	A	H-3	3.62	2.99
A	H-2	Ar	H3-H3'	3.66	2.99
A	H-2	Ar	H4-H4'	4.28	3.50
A	H-1	B	H-1	3.45	2.82
A	H-2	C	CH3	3.89	3.18
A	H-1	C	CH3	4.29	3.51
B	H-1	A	H-5	2.70	2.21
B	H-1	Ar	H3-H3'	5.43	4.44
B	H-1	B	H-3	3.15	2.58
B	H-1	D	H-3	2.35	1.92
C	H-1	C	H-2	3.40	2.78
C	H-1	C	H-3	3.78	3.09
C	H-1	C	H-4	4.26	3.49
C	H-4	E	CH3	3.08	2.52
C	H-3	E	H-1	3.27	2.67
C	H-5	E	H-4	2.59	2.12
D	CH3	D	H-5	3.33	2.72
D	H-1	D	H-5	3.23	2.64
D	H-1	E	H-3	3.65	2.99
E	H-1	E	H-3	2.78	2.28
E	H-1	E	H-4	4.25	3.48

Figure 64:-Stereoview of the 20 superimposed least energy conformations of compound1

TableS4: Torsional angle ϕ and Ψ of glycosidic linkage of compound 1

Dihedral angle	Residue	$\boldsymbol{\theta}$
ϕ_{1}	H3-C3-O-H1	36 ± 5
Ψ_{1}	C3-O-C1-H1	20 ± 5
ϕ_{2}	H2-C2-O-C1	5.20 ± 2
Ψ_{2}	C2-O-C1-H1	58 ± 10
ϕ_{3}	H4-C4-O-C1	-69 ± 10
Ψ_{3}	C4-O-C1-H1	20 ± 5
ϕ_{4}	H2-C2-O-C1	-138 ± 10
Ψ_{4}	C2-O-C1-H1	57 ± 5

Table S5: Distance constraints used in MD calculation for compound $\mathbf{1 8}$ derived from ROESY experiment in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}, 300 \mathrm{~K})$

Residue	Atom	Residue	Atom	Upper bond	Lower bond
A	H-1	Ar	H-3	4.1	3.38
A	H-2	A	H-1	3.65	2.99
A	H-4	A	H-2	3.78	3.09
A	H-2	B	CH2	3.24	2.61
A	H-3	B	H-1	3.79	3.10
B	H-2	Ar	H4-4'	3.63	2.97
B	H-5	B	H-1	3.21	2.63
B	H-2	C	H-1	3.94	3.23
B	H-4	D	H-1	3.82	3.12
C	CH3	C	H-4	3.83	3.13
C	CH3	C	H-5	3.62	2.96
C	H-5	C	H-1	3.73	3.05
C	H-4	A	H-1	3.56	2.91
D	CH3	D	H-4	3.35	2.74
D	H-1	D	H-3	3.94	3.22
D	H-4	D	H-1	3.59	2.94
D	H-2	E	H-1	3.67	3.03
E	CH3	E	H-5	3.57	2.92
E	H-5	E	H-1	2.78	2.27

Figure 65: Stereoview of the 15 superimposed least energy conformations of compound 18, protecting group ($\mathrm{Bn}, \mathrm{Bz}, \mathrm{Ac}$,) remove for the clarity

Table S6: Torsional angle ϕ and Ψ of glycosidic linkage of compound 18

Dihedral angle	Residue	$\boldsymbol{\theta}$
ϕ_{1}	H3-C3-O-H1	20 ± 5
Ψ_{1}	C3-O-C1-H1	154 ± 10
ϕ_{2}	H2-C2-O-C1	-106 ± 5
Ψ_{2}	C2-O-C1-H1	178 ± 15
ϕ_{3}	H4-C4-O-C1	45 ± 5
Ψ_{3}	C4-O-C1-H1	100 ± 5
ϕ_{4}	$\mathrm{H} 2-\mathrm{C} 2-\mathrm{O}-\mathrm{C} 1$	-162 ± 10
Ψ_{4}	$\mathrm{C} 2-\mathrm{O}-\mathrm{C} 1-\mathrm{H} 1$	59 ± 5

References

1. J. Keeler, Chem. Soc. Rev., 1990, 19, 381.
2. (a) L. Braunschweiler and R. R. Ernst, J. Magn. Reson., 1983, 53, 521; (b) A. Bax and D. G. Davis, J. Magn. Reson., 1985, 65, 355; (c) M. Rance, J. Magn.Reson., 1987, 74, 557; (d) J. Cavanagh, W. J. Chazin and M. Rance, J. Magn. Reson., 1990, 87, 110; (e) R. Bazzo and I. D. Campbell, J. Magn. Reson., 1988, 76, 358; (f) J. Cavanagh and M. Rance, J. Magn. Reson., 1992, 96, 670.
3. (a) A. A. Bothner, R. L. Stephens, J. Lee, C. D. Warren and R. W. Jeanloz, J. Am. Chem. Soc., 1984, 106, 811; (b) A. Bax and D. G. Davis, J. Magn. Reson., 1985, 63, 207; (c) C. Griesinger and R. R. Ernst, J. Magn. Reson., 1987, 75, 261; (d) D. Neuhaus and J. Keeler, J. Magn. Reson., 1986, 68, 568; (e) G. Wagner, W. Braun, T. F. Havel, T. Schaumann, N. Go and K. Wuthrich, J. Mol. Biol., 1987, 196, 611; (f) P. Guntert, W. Braun, M. Billeter and K. Wuthrich, J. Am. Chem. Soc., 1989, 111, 3997.
4. (a) A. D. Jr. MacKerell, D. Bashford, M. Bellott, R. L. Jr. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. III Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wio'rkiewicz-Kuczera, D. Yin and M. Karplus, J. Phys.Chem. B., 1998, 102, 3586; (b) B. R. Brooks, C. L. 3rd. Brooks, A. D. Jr. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci , R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York and M. Karplus, J. Comput. Chem., 2009, 30, 1545.
