New Sterically Hindered Tin(IV) Siloxane Precursors to Tinsilicate Materials:

Synthesis, Spectral, Structural and Photocatalytic Studies^{+‡}

Mohan Gopalakrishnan^a and Nallasamy Palanisami^{*a}

^aMaterials Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014,

Tamil Nadu, India.

Corresponding author: E-mail: palanisami.n@gmail.com; Tel: +91 98426 39776; Fax no:

+91416224 3092

Compounds	δ(¹¹⁹ Sn)	δ(²⁹ Si)	Reference
	ppm	ppm	
1	-149.60	-93.60	[1, 2]
2	-149.54	-93.37	[3, 1]
3	-148.98	-92.09	[4, 5]
4	-150.23	-91.62	[5, 6]
5	-151.31	-91.33	[7, 4]
6	-151.67	-91.32	[7, 2]
7	-151.34	-20.01	[8, 9]
8	-151.27	-20.08	[8, 9]

 Table S1.
 ¹¹⁹Sn and ²⁹Si NMR chemical shift values for tin(IV) siloxanes 1–8.

Figure S1. Geometry of tin and silicon in $({}^{t}Bu)_{2}Sn(OSi(O{}^{t}Bu)_{3})_{2}(1)$.

Figure S2. Unite cell packing pattern in $[({}^{t}Bu)_{2}Sn(OSi(O{}^{t}Bu)_{3})_{2}]$ (1) hydrogen atoms are omitted for clarity.

Figure S3. Unite cell packing pattern in $[({}^{t}Bu)_{2}Sn(OSiPh_{3})_{2}]$ (7) hydrogen atoms are omitted for clarity.

Figure S4. ¹H NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSi(O{}^{t}Bu)_{3})_{2}]$ (1) in CDCl₃.

Figure S5. ¹³C NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSi(O{}^{t}Bu)_{3})_{2}]$ (1) in CDCl₃.

Figure S6. ²⁹Si NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSi(O{}^{t}Bu)_{3})_{2}]$ **1** in CDCl₃.

Figure S7. ¹¹⁹Sn NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSi(O{}^{t}Bu)_{3})_{2}]$ (1) in C₆D₆.

Figure S8. ²⁹Si NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSi(O{}^{t}Bu)_{3})CI]$ (2) in C₆D₆.

Figure S9.¹¹⁹Sn NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSi(O{}^{t}Bu)_{3})CI]$ (2) in C₆D₆.

Figure S10. ¹H NMR spectrum of $[(n-Bu)_2Sn(OSi(O^tBu)_3)_2]$ (3) in C₆D₆.

Figure S11. ¹³C NMR spectrum of $[(n-Bu)_2Sn(OSi(O^tBu)_3)_2]$ (3) in C₆D₆.

Figure S12. ²⁹Si NMR spectrum of $[(n-Bu)_2Sn(OSi(O^tBu)_3)_2]$ (3) in C₆D₆.

Figure S13. ¹H NMR spectrum of $[(n-Bu)_2Sn(OSi(O^tBu)_3)Cl]$ (4) in CDCl₃.

Figure S14. ¹³C NMR spectrum of $[(n-Bu)_2Sn(OSi(O^tBu)_3)Cl]$ (4) in CDCl₃.

Figure S15. ²⁹Si NMR spectrum of $[(n-Bu)_2Sn(OSi(O^tBu)_3Cl] (4)$ in C₆D₆.

7.150

Figure S16. ¹H NMR spectrum of $[(Me)_2Sn(OSi(O^tBu)_3)_2]$ (5) in C₆D₆.

Figure S17. ¹³C NMR spectrum of $[(Me)_2Sn(OSi(O^tBu)_3)_2]$ (5) in C₆D₆.

10

Figure S19. ¹¹⁹Sn NMR spectrum of $[(Me)_2Sn(OSi(O^tBu)_3)_2]$ (5) in C₆D₆.

Figure S20. ¹H NMR spectrum of $[(Me)_2Sn(OSi(O^tBu)_3)CI]$ (6) in CDCl₃.

Figure S21. ¹³C NMR spectrum of $[(Me)_2Sn(OSi(O^tBu)_3)Cl]$ (6) in CDCl₃.

Figure S22. ²⁹Si NMR spectrum of $[(Me)_2Sn(OSi(O^tBu)_3)Cl]$ (6) in C₆D₆.

Figure S23. ¹H NMR spectrum of [(^tBu)₂Sn(OSiPh₃)₂] (7) in CDCl₃.

Figure S24. ¹³C NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSiPh_{3})_{2}]$ (7) in CDCl₃.

Figure S25. ²⁹Si NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSiPh_{3})_{2}]$ (7) in CDCl₃.

Figure S26. ¹¹⁹Sn NMR spectrum of $[(^{t}Bu)_{2}Sn(OSiPh_{3})_{2}]$ (7) in CDCl₃.

Figure S27. ²⁹Si NMR spectrum of $[({}^{t}Bu)_{2}Sn(OSiPh_{3})CI]$ (8) in C₆D₆.

Figure S28. ¹¹⁹Sn NMR spectrum of $[(^{t}Bu)_{2}Sn(OSiPh_{3})CI]$ (8) in C₆D₆.

Figure S29. FT-IR spectrum of $[(^{t}Bu)_{2}Sn(OSi(O^{t}Bu)_{3})_{2}]$ (1).

Figure S30. FT-IR spectrum of $[(n-Bu)_2Sn(OSi(O^tBu)_3)_2]$ (3)

Figure S31. FT-IR spectrum of $[(Me)_2Sn(OSi(O^tBu)_3)_2]$ (5).

Figure S32. FT-IR spectrum of $[({}^{t}Bu)_{2}Sn(OSiPh_{3})_{2}]$ (7)

Figure S33. Powder XRD patterns of the tinsilicate material obtained from degradation of 1.

References

- 1. V. Chandrasekhar, R. Thirumoorthi, R. K. Metre, B. Mahanti, *J. Organomet. Chem.*, 2011, **696**, 600–606.
- 2. C. W. Terry, P. K. Ganzal, T. D. Tilley, Chem. Mater., 1992, 4, 1290–1295.
- 3. V. Chandrasekhar, R. Thirumoorthi, Organometallics, 2009, 28, 2096–2106.
- 4. K. W. Terry, K. Su, T. D. Tilley, A. L. Rheingold, *Polyhedron*, 1997, **17**, 891–897.
- 5. K. W. Terry, C. G. Lugmair, P. K. Gantzel, and T. D. Tilley, *Chem. Mater.*, 1996, **8**, 274–280.
- (a) K. Samedov, Y. Aksu, M. Driess, *ChemPlusChem.*, 2012, **00**, 1–13. (b) M. Tsaroucha, Y. Aksu, J. D. Epping, M. Driess, *ChemPlusChem.*, 2013, **78**, 62–69.
- P. A. J. McManus, D. Cunningham, and M. J. Hynes, J. Organometal. Chem., 1994, 468, 87–92.
- (a) J. Beckmann, K. Jurkschat, D. Dakternieks, A. E. K. Lim, K. F. Lim, Organometallics, 2001, 20, 5125–5133. (b) V. I. Bakhmutov, NMR spectroscopy in liquids and solids, 2015, Taylor & Francis group CRC press.
- (a) B. J. Brisden, M. F. Mahon, C. C. Reinford, J. Chem. Soc. Dalton Trans., 1998, 3295–3300. (b) M. Lazell, M. Motevalli, S. A. A. Shah, A. C. Sullivan, J. Chem. Soc. Dalton Trans., 1997, 3363–3366.