Supporting information

Cyanomethylation of Alkenes with C-H Bond Activation of Acetonitrile: In-situ Generated Diazonium Salts as Promoter without Transition-metals

Zhangqin Ni, Xin Huang, Jichao Wang, Yuanjiang Pan*

Department of Chemistry, Zhejiang University, Hangzhou, 310027, China

Table of Contents

1. Experimental Section	1
1.1 General information	1
1.2 General procedure for the preparation of N-arylacrylamides	1
2. Experimental Procedures and Spectral Data	2
2.1 General procedure for the synthesis of oxoindoles	2
2.2 substrate scope of N-Arylacrylamides	2
3. Control Experiments.	7
4. NMR Spectra	10

1. Experimental Section

1.1 General information

All reagents were purchased from commercial suppliers and used without further purification. All reactions were conducted in oven-dried schlenk tubes under nitrogen atmosphere. ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature in CDCl₃. Data for ¹H-NMR are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. Data for ¹³C-NMR are reported in terms of chemical shift (δ ppm). Gas chromatography coupled to electron impact ionization/ time-of-flight mass spectrometry (GC/EI-TOF-MS) was performed using a HP6890 gas chromatography with a time of flight mass spectrometry (GCT premier GC-TOFMA, America). Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh).

1.2 General procedure for the preparation of N-arylacrylamides

In a dry 100 mL round-bottom flask, a mixture of aniline (10 mmol) and Et_3N (30 mmol, 3equiv) in 30 mL of CH_2Cl_2 were stirred in the ice-water bath. The methacryloyl chloride (15 mmol, 1.5 equiv) was added slowly by a syringe. The reaction was monitored by TLC. After the reaction completed, the mixture was evaporated under reduced pressure and extracted by ethyl acetate. The product was purified by silica gel column chromatography.

In a dry 100 mL round-bottom flask, a mixture of aniline (10 mmol) and Et_3N (30 mmol, 3equiv) in 30 mL of CH_2Cl_2 were stirred in the ice-water bath. The methacryloyl chloride (15 mmol, 1.5 equiv) was added slowly by a syringe. The reaction was monitored by TLC. After the reaction completed, the mixture was evaporated under reduced pressure and extracted by ethyl acetate. The crude product was purified by silica gel column chromatography.

In a dry 50 mL round-bottom flash, N-phenylmethacrylamide (5 mmol) was dissolved in 15 mL THF and stirred in the ice-water bath. The NaH (7.5 mmol, 1.5 equiv) was added slowly. After 5 mins, the MeI (7.5 mmol, 1.5 equiv) was added to the mixture slowly by a syringe. The reaction was monitored by TLC. When the reaction completed, the mixture was evaporated under reduced pressure and extracted by ethyl acetate. The product was purified by silica gel column chromatography.

2. Experimental Procedures and Spectral Data

2.1 General procedure for the synthesis of oxoindoles

In a dry 25 mL oven-dried schlenk tubes, N-arylacrylamide (0.5 mmol), aniline (1.5 mmol, 3.0 equiv) and KOAc (1.0 mmol, 2.0 equiv) were dissolved in 4 mL CH₃CN under an atmosphere of dry nitrogen at room temperature. *Tert*-butyl nitrite (1.5 mmol, 3.0 equiv) was then added with a syringe. A fine bubbling was observed and the reaction mixture was heated to 80°C for 10h. Then the solution was cooled to r.t., washed with a saturated aqueous solution of NaCl, extracted by ethyl acetate and dried over by Na_2SO_4 . The product was purified by silica gel column chromatography.

2.2 substrate scope of N-Arylacrylamides

3-(1,3-dimethyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.31 (m, 1H), 7.18 (m, 1H), 7.10 (m, 1H), 6.87 (d, J = 7.6Hz, 1H), 3.22 (s, 3H), 2.32 (m, 1H), 2.05 (m, 3H), 1.39 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 179.1, 143.3, 131.8, 128.9, 123.2, 122.8, 119.0, 108.7, 47.5, 33.6, 26.5, 23.6, 13.0.

HRMS (EI, *m/z*): calcd for C₁₃H₁₄N₂O: 214.1106; found: 214.1100.

3-(1,3,5-trimethyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.10 (m, 1H), 7.09 (s, 1H), 6.75 (d, J = 6.3Hz, 1H), 3.18 (s, 3H), 2.35 (s, 3H), 2.30 (m, 1H), 2.03 (m, 3H), 1.37 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.7, 140.6, 132.5, 131.5, 128.7, 123.3, 118.8, 108.1, 47.2, 33.3, 26.2, 23.3, 21.0, 12.7.

HRMS (EI, m/z): calcd for C₁₄H₁₆N₂O: 228.1263; found: 228.1268.

3-(5-chloro-1,3-dimethyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.22 (m, 1H), 7.1 (m, 1H), 6.74 (d, J = 6.6Hz, 1H), 3.13 (s, 3H), 2.25 (m, 1H), 1.98 (m, 3H), 1.32 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.2, 141.6, 133.3, 128.5, 128.2, 123.1, 118.4, 109.4, 47.4, 33.0, 26.3, 23.2, 12.6.

HRMS (EI, *m/z*): calcd for C₁₃H₁₃ClN₂O: 248.0716; found: 248.0711.

3-(5-fluoro-1,3-dimethyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.01 (m, 1H), 6.94 (m, 1H), 6.80 (m, 1H), 3.19 (s, 3H), 2.29 (m, 1H), 2.02 (m, 3H), 1.38 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.4, 160.5, 158.1, 138.9, 138.9, 133.3, 133.2, 118.4, 114.9, 114.7, 110.9, 110.7, 109.0, 109.0, 47.6, 47.6, 33.1, 26.3, 23.2, 12.6. HRMS (EI, *m/z*): calcd for C₁₃H₁₃FN₂O: 232.1012; found: 232.1010.

3-(5-bromo-1,3-dimethyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.44 (m, 1H), 7.30 (m, 1H), 6.76 (d, J = 8.3Hz, 1H), 3.20 (s, 3H), 2.33 (m, 1H), 2.06 (m, 3H), 1.40 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.2, 142.1, 133.7, 131.5, 125.9, 118.4, 115.7, 109.9, 47.4, 33.2, 26.4, 23.4, 12.8.

HRMS (EI, *m/z*): calcd for C₁₃H₁₃BrN₂O: 292.0211; found: 292.0207.

3-(5-ethoxy-1,3-dimethyl-2-oxoindolin-3-yl)propanenitrile

¹**H** NMR (CDCl₃, 400 MHz) δ : 6.79 (m, 3H), 3.99 (q, J = 5.6Hz, 2H), 3.17 (s, 3H), 2.29 (m, 1H), 2.01 (m, 3H), 1.39 (t, J = 5.6Hz, 3H), 1.36 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.4, 155.6, 136.3, 132.8, 118.7, 113.1, 110.7, 108.7, 64.0, 47.6, 33.3, 26.2, 23.4, 14.7, 12.7.

HRMS (EI, *m/z*): calcd for C₁₅H₁₈N₂O₂: 258.1368; found: 258.1364.

3-(4-chloro-1,3-dimethyl-2-oxoindolin-3-yl)propanenitrile 3-(6-chloro-1,3-dimethyl-2-oxoindolin-3-yl)propanenitrile ¹H NMR (CDCl₃, 400 MHz) δ : 7.26 (m, 1.3H), 7.10 (m, 1H), 7.04 (m, 1.1H), 6.89 (m, 0.4H), 6.81 (m, 1.1H), 3.23 (s, 3H), 3.21 (s, 1.1H), 2.53 (m, 1.2H), 2.38 (m, 1.7H), 2.03 (m, 3.7H), 1.53 (s, 3H), 1.39 (s, 1.3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.7, 178.2, 144.9, 144.2, 134.3, 130.6, 129.9, 129.9, 127.2, 123.7, 123.5, 122.7, 118.5, 118.3, 109.2, 107.0, 48.9, 46.9, 33.0, 30.2, 26.5, 26.3, 23.3, 21.1, 13.0, 12.7.

HRMS (EI, *m/z*): calcd for C₁₃H₁₃ClN₂O: 248.0716; found: 248.0720.

3-(1,3,4-trimethyl-2-oxoindolin-3-yl)propanenitrile 3-(1,3,6-trimethyl-2-oxoindolin-3-yl)propanenitrile ¹**H NMR** (CDCl₃, 400 MHz) δ : 7.19 (t, J = 6.3Hz, 1H), 7.04 (d, J = 6Hz, 0.6H), 6.89 (d, J = 6Hz, 0.7H), 6.84 (d, J = 6.2Hz, 1H), 6.70 (m, 1.5H), 3.17 (m, 4.4H), 2.36 (m, 5.3H), 2.26 (m, 1.9H), 2.00 (m, 4.7H), 1.45 (s, 3H), 1.35 (s, 1.8H).

¹³C NMR (CDCl₃, 100 MHz) δ: 179.0, 178.7, 143.3, 143.0, 138.6, 134.2, 128.4, 128.3, 127.9, 125.3, 123.3, 122.1, 118.7, 118.5, 109.3, 106.1, 48.7, 46.9, 33.2, 31.2, 26.2, 26.0, 23.3, 21.6, 21.6, 18.0, 12.8, 12.6.

HRMS (EI, *m/z*): calcd for C₁₄H₁₆N₂O: 228.1263; found: 228.1260.

3-(1,3,7-trimethyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) δ: 6.99 (m, 3H), 3.49 (s, 3H), 2.57 (s, 3H), 2.30 (m, 1H), 2.00 (m, 3H), 1.36 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 179.5, 140.7, 132.2, 132.1, 122.8, 120.3, 120.1, 118.8, 46.5, 33.5, 29.5, 23.7, 18.9, 12.7.

HRMS (EI, *m/z*): calcd for C₁₄H₁₆N₂O: 228.1263; found: 228.1259.

3-(7-chloro-1,3-dimethyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.25 (m, 1H), 7.07 (m, 1H), 7.01 (m, 1H), 3.59 (s, 3H), 2.33 (m, 1H), 2.06 (m, 3H), 1.40 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ: 179.0, 139.0, 134.5, 131.0, 123.8, 121.1, 118.5, 116.0, 47.1, 33.5, 29.6, 23.8, 12.8.

HRMS (EI, *m/z*): calcd for C₁₃H₁₃ClN₂O: 248.0716; found: 248.0722.

3-(1-ethyl-3-methyl-2-oxoindolin-3-yl)propanenitrile

¹**H** NMR (CDCl₃, 400 MHz) δ : 7.29 (m, 1H), 7.17 (m, 1H), 7.09 (m, 1H), 6.89 (d, J = 6.2Hz, 1H), 3.75 (m, 2H), 2.30 (m, 1H), 2.05 (m, 3H), 1.37 (s, 3H), 1.25 (t, J = 5.8Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.3, 142.0, 131.7, 128.5, 122.7, 122.6, 118.7, 108.5, 47.1, 34.6, 33.3, 23.3, 12.6, 12.5.

HRMS (EI, *m/z*): calcd for C₁₄H₁₆N₂O: 228.1263; found: 228.1269.

3-(1-butyl-3-methyl-2-oxoindolin-3-yl)propanenitrile

¹**H** NMR (CDCl₃, 400 MHz) δ : 7.30 (m, 1H), 7.18 (m, 1H), 7.08 (m, 1H), 6.88 (d, J = 6.2Hz, 1H), 3.7 (t, J = 6.0Hz, 2H), 2.31 (m, 1H), 2.08 (m, 3H), 1.64 (t, J = 6.9Hz, 2H), 1.37 (m, 4H), 0.96 (t, J = 5.9Hz, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.7, 142.5, 131.8, 128.6, 122.8, 122.7, 118.9, 108.8, 47.2, 39.8, 33.4, 29.5, 23.6, 20.1, 13.7, 12.8.

HRMS (EI, *m/z*): calcd for C₁₆H₂₀N₂O: 256.1576; found: 256.1570.

3-(1-isopropyl-3-methyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.27 (m, 1H), 7.18 (m, 1H), 7.09 (m, 1H), 7.05 (m, 1H), 4.62 (m, 1H), 2.33 (m, 1H), 2.30 (m, 3H), 1.47 (m, 6H), 1.37 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ: 178.4, 141.7, 132.0, 128.3, 122.8, 122.4, 118.8, 110.1, 46.9, 43.8, 33.5, 23.6, 19.4, 19.3, 12.6.

HRMS (EI, *m/z*): calcd for C₁₅H₁₈N₂O: 242.1419; found: 242.1415.

3-(3-(methoxymethyl)-1-methyl-2-oxoindolin-3-yl)propanenitrile

¹**H NMR** (CDCl₃, 400 MHz) δ : 7.24 (m, 2H), 7.04 (t, J = 6.0Hz, 1H), 6.80 (d, J = 6.2Hz, 1H), 3.59 (d, J = 7.1Hz, 1H), 3.42 (d, J = 7.1Hz, 1H), 3.19 (s, 3H), 3.14 (s, 3H), 2.26 (m, 1H), 2.02 (m, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 176.4, 143.7, 128.9, 128.8, 123.7, 122.9, 118.7, 108.3, 75.7, 59.4, 52.4, 28.9, 26.2, 12.3.

HRMS (EI, *m/z*): calcd for C₁₄H₁₆N₂O₂: 244.1212; found: 244.1211.

2-(1-methyl-2-oxo-1,2,5,6-tetrahydro-4*H*-pyrrolo[3,2,1-*ij*]quinolin-1-yl)acetonitrile

¹**H NMR** (CDCl₃, 400 MHz) δ : 7.02 (m, 3H), 3.72 (m, 2H), 2.79 (t, J = 6.0Hz, 2H), 2.28 (m, 1H), 2.06 (m, 5H), 1.40 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ: 177.6, 138.8, 130.0, 127.3, 122.3, 120.5, 120.3, 118.8, 48.5, 38.7, 33.1, 24.4, 23.1, 21.0, 12.8.

HRMS (EI, *m/z*): calcd for C₁₄H₁₄N₂O: 226.1106; found: 226.1100.

3-(2,2-dichloroethyl)-1,3-dimethylindolin-2-one

¹**H** NMR (CDCl₃, 400 MHz) δ : 7.46 (m, 1H), 7.32 (m, 1H), 7.09 (m, 1H), 7.03 (m, 1H), 5.58 (q, J = 5.2 Hz, 1H), 3.11 (s, 3H), 2.94 (m, 1H), 2.78 (m, 1H), 1.27 (s, 3H).

¹³**C NMR** (CDCl₃, 100 MHz) δ: 178.9, 143.6, 131.0, 128.8, 123.9, 122.7, 109.1, 71.5, 49.4, 47.1, 26.7, 26.7.

HRMS (EI, *m/z*): calcd for C₁₂H₁₃Cl₂NO: 257.0374; found: 257.0370.

1,3-dimethyl-3-(2,2,2-trichloroethyl)indolin-2-one

¹**H NMR** (CDCl₃, 400 MHz) *δ*: 7.54 (m, 1H), 7.28 (m, 1H), 7.03 (m, 2H), 3.71 (m, 1H), 3.43 (m, 1H), 3.14 (s, 3H), 1.29 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ: 178.4, 143.5, 129.8, 128.8, 125.3, 122.0, 109.1, 97.3, 59.1, 47.9, 26.8, 26.7.

HRMS (EI, *m/z*): calcd for C₁₂H₁₂Cl₃NO: 290.9984; found: 290.9988.

3. Control Experiments.

In a dry 25 mL oven-dried schlenk tubes, N-arylacrylamide (0.5 mmol), aniline (1.5 mmol, 3.0 equiv), KOAc (1.0 mmol, 2.0 equiv) and TEMPO (or BHT) (1.5 mmol, 3.0 equiv) were dissolved in 4 mL CH₃CN under an atmosphere of dry nitrogen at room temperature. *Tert*-butyl nitrite (1.5 mmol, 3.0 equiv) was then added with a syringe. The reaction mixture was heated to 80°C for 10h. Then the solution was cooled to r.t., washed with a saturated aqueous solution of NaCl, extracted by ethyl acetate and dried over by Na₂SO₄. The mixture was detected by GC-MS and the exact molecular weight of compound **3** was confirmed by HRMS.

4. NMR Spectra

7, 2898 7, 2072 7, 2072 7, 1760 7, 0534 8, 136 8, 1 1 1 350

A 2075 3 2076 3 2076 2 5483 2 5493 2 5495 2

-3,4967 -2,5741 -2,2965 -2,2965 -2,2961 -2,296 -

3, 5619 2, 3615 2, 3615 2, 3617 2, 3741 2, 3711 2, 3711 2, 3712 2, 3713 2, 3717 2, 3713 2, 371

71, 2772 71, 2617 71, 2617 71, 2617 71, 2276 71, 0393 71, 0243 6, 7992 、 、 19973 19973 199755 1997555 1997555 199755 199755 1997555555555

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

