Electronic Supplementary Information (ESI)

Long-term stability of novel double rhodanine indoline dyes having one and two anchor carboxyl group(s) in dye-sensitized solar cell

Masaki Matsui,^{a,*} Nagisa Tanaka,^a Yasuhiro Kubota,^a Kazumasa Funabiki,^a Jiye Jin,^b, Shinji Higashijima^d, and Hidetoshi Miura^d, Kazuhiro Manseki^d

^aDepartment of Chemistry and Biocmolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan ^bDepartment of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan ^cResearch Center of Organic Electronics Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan ^dChemicrea. Inc., 1-133 Ohtsurugi, Shimogawa, Izumi-machi, Iwaki, Fukushima 971-8183, Japan

- Figure S1 Fluorescence lifetime of **GU115**, **GU116**, and **GU117** (1.0 x 10⁻⁵ mol dm⁻³) in chloroform.
- Figure S2 Cyclic voltammogram of **GU115**, **GU116**, and **GU117** in the presence of ferrocene. Measured in DMF *vs* AgQRE at scan rate 100 mV s⁻¹.
- Table S1Fluorescence lifetime of GU115, GU116, and GU117
- Figure S3. ¹H NMR spectrum of **4**.
- Figure S4. ¹³C NMR spectrum of **4**.
- Figure S5. ¹H NMR spectrum of **6a**.
- Figure S6. ¹³C NMR spectrum of **6a**.
- Figure S7. ¹H NMR spectrum of **6b**.
- Figure S8. ¹³C NMR spectrum of **6b**.
- Figure S9. ¹H NMR spectrum of **6c**.
- Figure S10. ¹³C NMR spectrum of **6c**.
- Figure S11. ¹H NMR spectrum of **7a**.
- Figure S12. ¹³C NMR spectrum of **7a**.
- Figure S13. ¹H NMR spectrum of **7b**.

- Figure S14. ¹³C NMR spectrum of **7b**.
- Figure S15. ¹H NMR spectrum of **7c**.
- Figure S16. ¹³C NMR spectrum of **7c**.
- Figure S17. ¹H NMR spectrum of **11**.
- Figure S18. ¹³C NMR spectrum of **11**.
- Figure S19. ¹H NMR spectrum of **GU115**.
- Figure S20. ¹³C NMR spectrum of **GU115**.
- Figure S21. ¹H NMR spectrum of **GU116**.
- Figure S22. ¹³C NMR spectrum of **GU116**.
- Figure S23. ¹H NMR spectrum of **GU117**.
- Figure S24. ¹³C NMR spectrum of **GU117**.

Figure S1 Fluorescence lifetime of **GU115**, **GU116**, and **GU117** (1.0 x 10⁻⁵ mol dm⁻³) in chloroform.

Figure S2 Cyclic voltammogram of **GU115**, **GU116**, and **GU117** in the presence of ferrocene. Measured in DMF *vs* AgQRE at scan rate 100 mV s⁻¹.

Table S1 Fluorescence lifetime of GU115, GU116, and GU117

Dyes ^a	$\frac{\lambda_{\text{ex}}^{b}}{\text{nm}}$	$\frac{F_{\max}^{c}}{nm}$	CHI ²	$\frac{\tau_{\rm f}^{\ d}}{\rm ns}$
GU115	470	656	1.03	1.48
GU116	470	641	1.02	1.15
GU117	470	645	1.02	1.09

^{*a*}Measured on 1.0×10^{-5} mol dm⁻³ of substrate in chloroform.

^bExcited wavelength.

^cFluorescence maximum.

^dFluorescence lifetime.

Figure S3. ¹H NMR spectrum of **4**.

Figure S4. ¹³C NMR spectrum of **4**.

Figure S5. ¹H NMR spectrum of **6a**.

Figure S6. ¹³C NMR spectrum of **6a**.

Figure S7. ¹H NMR spectrum of **6b**.

Figure S8. ¹³C NMR spectrum of **6b**.

Figure S9 ¹H NMR spectrum of **6c**.

Figure S10. ¹³C NMR spectrum of **6c**.

Figure S11. ¹H NMR spectrum of **7a**.

Figure S12. ¹³C NMR spectrum of **7a**.

Figure S13. ¹H NMR spectrum of **7b**.

Figure S14. ¹³C NMR spectrum of **7b**.

Figure S15. ¹H NMR spectrum of **7c**.

Figure S16. ¹³C NMR spectrum of **7c**.

Figure S17. ¹H NMR spectrum of **11**.

Figure S18. ¹³C NMR spectrum of **11**.

Figure S19. ¹H NMR spectrum of **GU115**.

Figure S20. ¹³C NMR spectrum of **GU115**.

Figure S21. ¹H NMR spectrum of **GU116**.

Figure S22. ¹³C NMR spectrum of **GU116**.

Figure S23. ¹H NMR spectrum of **GU117**.

Figure S24. ¹³C NMR spectrum of **GU117**.