Supporting information

The partitioning of a trace element between a carbonate mineral and aqueous solution is generally expressed by the distribution coefficient, K_d, which is defined as

$$K_{d} = \left(\frac{X_{\text{TrCO}_{3}}}{X_{\text{MCO}_{3}}}\right) / \left(\frac{m_{\text{Tr}}}{m_{\text{M}}}\right)$$
(A1)

McIntire (1963) calculated that, K_d is related to the quotient of the thermodynamic solubility products of major element carbonate (MCO₃) and trace element carbonate (TrCO₃) and K_d can be expressed:

$$K_{d} = \left(\frac{K_{\rm MCO_{3}}}{K_{\rm TrCO_{3}}}\right)^{\nu_{T}} \left(\frac{\gamma_{\rm Tr}}{\gamma_{\rm M}}\right) \left(\exp\left(\frac{-\Delta\mu}{\upsilon_{a}RT}\right)\right)$$
(A2)

The amount of Ca and Tr precipitated per kilogram of water passing through the reactor is: $n_{Ca} = (m(in)_{Ca}) - (m(out)_{Ca})(lkg)$ (A3)

$$n_{Tr} = (m(in)_{Tr}) - (m(out)_{Tr})(lkg)$$
(A4)

From the definition of mole fraction;

$$X_{TrCO_{3}} = \frac{n_{TrCO_{3}}}{n_{TrCO_{3}} + n_{CaCO_{3}}}$$
(A5)

$$X_{CaCO_{3}} = \frac{n_{CaCO_{3}}}{n_{TrCO_{3}} + n_{CaCO_{3}}}$$
(A6)

So, the Eq.A3, A4, A5 and A6 can be written as:

$$\frac{X_{\text{TrCO}_3}}{X_{\text{CaCO}_3}} = \frac{n_{\text{TrCO}_3}}{n_{\text{CaCO}_3}} = \frac{(m(\text{in})_{\text{fr}} - m(\text{out})_{\text{fr}})}{(m(\text{in})_{\text{Ca}} - m(\text{out})_{\text{Ca}})}$$
(A7)

Also because, the effluent stream (out) is simply the contents of the reactor, and the concentration ratio of Tr to Ca in the reactor is;

 $m(out)_{\Gamma r}$

 $m(out)_{C_a}$

This ratio and Eq. A7 can be substituted into the definition of K_d to give;

$$K_{d} = \left(\frac{X_{TrCO_{3}}}{X_{CaCO_{3}}}\right) \left/ \left(\frac{m_{Tr}}{m_{Ca}}\right) = \left(\frac{m(in)_{Tr} - m(out)_{Tr}}{m(in)_{Ca} - m(out)_{Ca}}\right) \left/ \left(\frac{m(out)_{Tr}}{m(out)_{Ca}}\right) \right|$$
(A8)

After measuring the $m(in)_{Tr}$, $m(in)_{Ca}$, $m(out)_{Tr}$, $m(out)_{Ca}$ and each sampling time, the K_d can be given. Eq. A8 can be rearranged to;

$$\left(\frac{m(out)_{\Gamma_{r}}}{m(in)_{\Gamma_{r}}}\right) = \frac{1}{K_{d}\left(\frac{m(in)_{C_{a}}}{m(out)_{C_{a}}}\right) - K_{d} + 1}$$
(A9)

 f_i indicates the fraction of species *i* remaining in solution, as:

$$\mathbf{f}_i = \frac{\mathbf{m}(\mathbf{out})_i}{\mathbf{m}(\mathbf{in})_i} \tag{A10}$$

So, the Eq. A10 becomes:

$$f_{\rm Tr} = \frac{1}{(K_{\rm d}/f_{\rm Ca}) - K_{\rm d} + 1}$$
(A11)

And F_i defines the fraction of species *i* precipitated from solution, as $F_{i} = 1 - f_{i}$ (A12)

So that, the Eq. A12 becomes:

£1	(A13)
$r_{\rm Tr} = \frac{1}{\left(\frac{K_{\rm d}}{1 - F_{Ca}}\right) - K_{\rm d} + 1}$	
This can be rearranged to:	

(A14)

$$\mathbf{f}_{\mathrm{Tr}} = \frac{1}{\left(\frac{\mathbf{K}_{\mathrm{d}}}{1 - \mathbf{F}_{Ca}}\right) - \mathbf{K}_{\mathrm{d}} + 1}$$

$\begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{C} \\ \mathbf{C} \end{pmatrix}$	
	Notation
М	major element
Tr	trace element
m _{Ca}	concentration of Ca element in aqueous solution, mol/kg
m _{Tr}	concentration of a trace element in aqueous solution, mol/kg
n _{Ca}	number of moles of Ca element
n _{Tr}	number of moles of the trace element
R	the gas constant, 8.314 J/mol K
Т	temperature, K
ν_a	ratio of the number of anions in Tr_nCO_3 to the number of anions in M_mCO_3
X _{CaCO3}	mole fraction of calcite component in the solid solution
X _{TrCO3}	mole fraction of the trace element carbonate component in the solid solution
$\Delta \mu$	difference between the chemical potential of $TrCO_3$ in a pure crystal of $TrCO_3$
	and its chemical potential as a solid solution component in MCO ₃
γ	activity coefficient of element in aqueous solution
Fe _w -OH	weak-sites of $Fe(OH)_3$
Fe _s -OH	strong-sites of Fe(OH) ₃
Al _w -OH	weak-sites of Al(OH) ₃
Al _s -OH	strong-sites of Al(OH) ₃