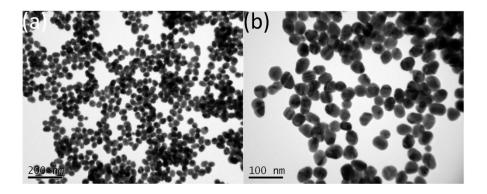
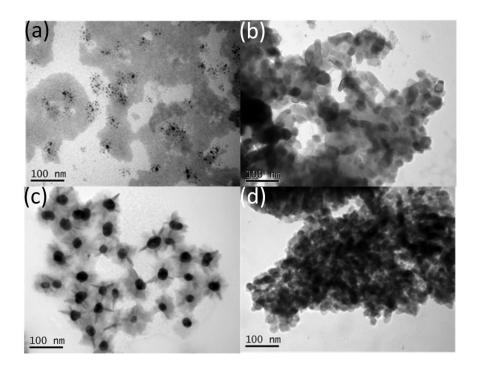
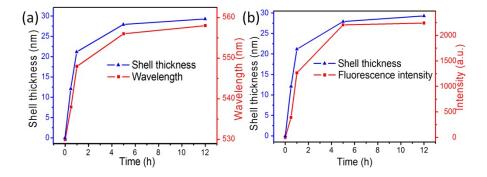
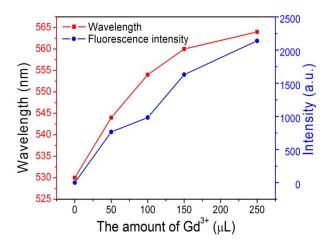
**Supplemental Information** 

## Facile Synthesis of Flower-Shaped Au/GdVO<sub>4</sub>:Eu Core/Shell Nanoparticles by Using Citrate as Stabilizer and Complexing Agent

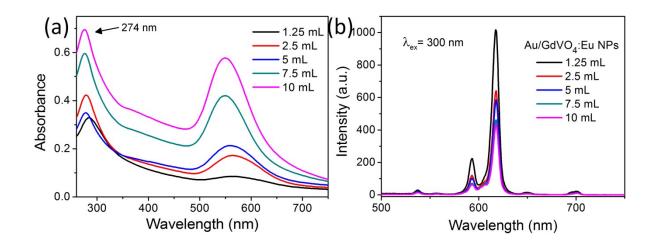
Ming Chen,<sup>a</sup> Jia-Hong Wang,<sup>a</sup> Zhi-Jun Luo,<sup>a</sup> Zi-Qiang Cheng,<sup>a</sup> Ya-Fang Zhang,<sup>a</sup> Xue-Feng Yu,<sup>a</sup> Li Zhou,\*<sup>a</sup> Qu-Quan Wang\*<sup>ab</sup>

<sup>a</sup>School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, P.R.China <sup>b</sup>The Institute of Advanced Studies, Wuhan University, Wuhan 430072, P.R.China \*E-mail: zhouli@whu.edu.cn (L.Z.),\*E-mail: qqwang@whu.edu.cn (Q.Q.W.).



Figure S1. TEM images of Au NPs.




**Figure S2.** TEM images of Au/GdVO<sub>4</sub>:Eu NPs synthesized a) using CTAB-stabilized Au NPs, b) without/with a small amount of sodium citrate, c) with moderate sodium citrate, d) with excess sodium citrate.



**Figure S3.** The increasing trend of different reaction times: the thickness of vanadate shells versus a) SPR peak wavelength and b) the fluorescence intensity.



**Figure S4.** The increasing trend with different amount of 0.1 M Gd(NO<sub>3</sub>)<sub>3</sub> aqueous solution: SPR peak wavelength versus the fluorescence intensity.



**Figure S5.** (a) Absorption and (b) fluorescence spectra of Au/GdVO<sub>4</sub>:Eu NPs with different amount of as-synthesized AuNPs. The volume of 0.1 M Gd(NO<sub>3</sub>)<sub>3</sub> aqueous solution is 200  $\mu$ L.