Supplementary Information

Improved Coulombic efficiency and cycleability of SnO₂-Cu-Graphite composite anode with dual scale embedding structure

Bin Lu^{a,b}, Renzong Hu^{a,b}, Jiangwen Liu^{a,b}, Jun Liu^{a,b}, Hui Wang^{a,b,*}, Min Zhu^{a,b}

^a School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of

Guangdong Province, South China University of Technology, Guangzhou, 510641, China

^b China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of

Technology, Guangzhou, 510641, China

* Corresponding author.

Tel.: +86-20-87112762; Fax: +86-20-87111317

E-mail address: mehwang@scut.edu.cn (H Wang)

Calculation process of the theoretical capacity SnO₂-Cu composite:

The theoretical capacity of SnO_2 is 1494 mAh g^{-1} when the Li_2O is fully reversible, the molar ratio of SnO_2 : Cu is 1:2, then the corresponding weight ratio of SnO_2 is 54.25% (150.71/(150.71 + 63.55 x 2) = 54.25%), so the corresponding theoretical capacity of the SnO_2 -Cu composite is 810.5 mAh g^{-1} (1494 x 54.25% mAh g^{-1} = 810.5 mAh g^{-1}).

Calculation process of the theoretical capacity SnO₂-Cu-C composite:

The weight percent of SnO₂ in the SnO₂-Cu-50h composite (SnO₂:Cu=1:2 molar ratio) is 54.25% ($150.71/(150.71+63.55 \times 2)=54.25\%$), and the weight percent of SnO₂ in the SnO₂-Cu-50h-30%C composite is 37.9% ($54.25\% \times 0.7=37.9\%$), so the theoretical capacity of SnO₂-Cu-50h-30%C is 678.9 mAh g⁻¹ when the Li₂O is fully reversible ($1494 \times 37.9\% + 372 \times 30\%$) mAh g⁻¹ = 678.9 mAh g⁻¹). Accordingly, the theoretical capacity of SnO₂-Cu-50h-30%C is 408.5 mAh g⁻¹ when the Li₂O is irreversible (($782 \times 37.9\% + 372 \times 30\%$) mAh g⁻¹ = 408.5 mAh g⁻¹), so the theoretical capacity range of SnO₂-Cu-50h-30%C is $408.5\sim678.9$ mAh g⁻¹. Similarly, the SnO₂-Cu-50h-10%C, SnO₂-Cu-50h-20%C and SnO₂-30%C composites have the theoretical reversible capacity range of $419.0\sim766.6$, $413.8\sim722.8$ and $659\sim1157.4$ mAh g⁻¹, respectively

Figures

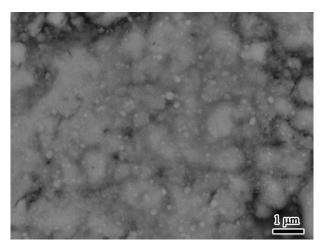


Fig. S1 Back-scattered electron SEM image of SnO₂-Cu-10h composite.

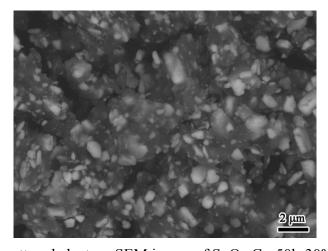


Fig. S2 Back-scattered electron SEM image of SnO₂-Cu-50h-30%C composite.