Silica-Coated Gradient Alloy Quantum Dots with High luminescence for Converter Materials in White Light-Emitting Diodes

Hak-Sung Jung,^{‡,a,e} Young-Jae Kim,^{‡,a, b} Junsang Cho,^{a, c} Tae-Jong Yoon,^{*, d} and Jin-Kyu Lee^{*, a}

Fig. S1 PL intensities of the QDs and QD@PVP were determined after dispersing in chloroform as times. The intensities were normalized at 540 nm (GQD and GQD@PVP) and 620 nm (RQD and RQD@PVP).

Fig. S2 PL spectra of the prepared GQD@PVP in ethanol with different base catalyst (NH₄OH: a, DMA: b) were determined as times.

Fig. S3 RQD@PVP (a and c) and GQD@PVP (b and d) particle dispersed in ethanol with different base catalysts. (NH₄OH: a and b, DMA: c and d). The particle solution with DMA base were revealed higher solubility then NH₄OH contained solution. Especially, RQD@PVP solution with NH₄OH was completely precipitated within 3 hr.

 Table S1 Quantum yields of QD solutions.

Sample	Solvent	Quantum yield (%)		
GQD	Hexane	46.3		
GQD@PVP	CHCl ₃	48.3		
GQD@SiO ₂	EtOH	47.7		
RQD	Hexane	55.9		
RQD@PVP	CHCI ₃	37.7		
RQD@SiO ₂	EtOH	32.1		

Fig. S4 TEM images for $GQD@SiO_2$ nanoparticle with different reaction times. (Scale bar: 50 nm)

Fig. S5 TEM images for RQD@SiO₂ nanoparticle with different reaction times. (Scale bar: 50 nm)

Fig. S6 Size distribution and average size of $GQD@SiO_2$ (a and c) and $RQD@SiO_2$ (b and d) in EtOH as function of the reaction time measured by DLS.

Ti	me (hr)	1	2	3	6	9	12	24
Mean size	GQD@SiO ₂	60.8±0.9	80.6±1.0	81.8±0.3	87.5±1.0	90.0±0.3	90.7±0.9	90.3±0.6
(nm)	RQD@SiO ₂	62.6±0.9	63.6±0.6	68.5±0.3	75.0±0.6	78.2±0.4	80.1±1.0	80.1±0.2

Table S2 Monitoring of size of QD@SiO₂ nanoparticles in ethanol solution as the reaction times by DLS.

Fig. S7 Low magnification TEM images for gradient alloy GQD@SiO₂ nanoparticle with different shell thickness (a: 4.3, b: 7.0, c: 9.6, d: 11 and e: 14 nm for silica shell thickness). The thickness of silica shell was proportion to the increasing of TEOS concentration.

Fig. S8 PL spectra of $QD@SiO_2$ -based WLED that operating power was for 0.5 W (a) and 1 W (b).