Electronic supplementary information (ESI)

Mixed guanidinato-amido $\mathbf{G e}(\mathrm{IV})$ and $\mathrm{Sn}(\mathrm{IV})$ complexes with $\mathrm{Ge}=\mathrm{E}(\mathrm{E}=\mathrm{S}$,

Se) double bond and $\mathrm{SnS}_{4}, \mathrm{Sn}_{2} \mathrm{Se}_{2}$ rings

Milan Kr. Barman and Sharanappa Nembenna*
National Institute of Science Education and Research (NISER), Bhubaneswar, 751005
INDIA
Email:snembenna@niser.ac.in
Tel: 0091-674-2304126. Fax: 0091-674-2302436

Fig. S1 $\quad{ }^{1} \mathrm{H}$ NMR Spectrum of $\left.\left[\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \mathrm{S}(\mathbf{3})$
Fig. S2 $\quad{ }^{13} \mathrm{C}$ NMR Spectrum of $\left.\left[\mathrm{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \mathrm{S}$ (3)
Fig. S3 $\quad{ }^{29} \mathrm{Si}$ NMR Spectrum of $\left.\left[\mathrm{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \mathrm{S}(\mathbf{3})$
Fig. S4 $\quad{ }^{1} \mathrm{H}$ NMR Spectrum of $\left.\left[\mathrm{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \operatorname{Se}(4)$
Fig. S5 $\quad{ }^{13} \mathrm{C}$ NMR Spectrum of $\left.\left[\mathrm{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \operatorname{Se}(4)$
Fig. S6 $\quad{ }^{29} \operatorname{Si}$ NMR Spectrum of $\left.\left[\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}\right] \mathrm{Se}$ (4)
Fig. S7 $\quad{ }^{1} \mathrm{H}$ NMR Spectrum of $\left\{\left[\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{SnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right\} \mathrm{S}_{4}(\mathbf{5})$
Fig. S8 $\quad{ }^{13} \mathrm{C}$ NMR Spectrum of $\left\{\left[\mathrm{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{SnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right\} \mathrm{S}_{4}(\mathbf{5})$
Fig. S9 $\quad{ }^{29} \mathrm{Si}$ NMR Spectrum of $\left\{\left[\mathrm{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \operatorname{SnN}\left(\mathrm{SiMe}_{3}\right)_{2}\right\} \mathrm{S}_{4}(\mathbf{5})$
Fig. S10 $\quad{ }^{1} H$ NMR Spectrum of $\left\{\left[\operatorname{ArNC}\left(N^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2} \operatorname{Sn}(\mu-\mathrm{Se})\right\}_{2}(\mathbf{6})$
Fig. S11 $\quad{ }^{13} \mathrm{C}$ NMR Spectrum of $\left\{\left[\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{Sn}(\mu-\mathrm{Se})\right\}_{2}(\boldsymbol{6})$
Fig. S12 $\quad{ }^{29} \operatorname{Si}$ NMR Spectrum of $\left\{\left[\operatorname{ArNC}\left(N^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right] \mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{Sn}(\mu-\mathrm{Se})\right\}_{2}(\boldsymbol{6})$
Fig S13 and Fig S14 Computational studies

Fig. S1: ${ }^{1} \mathrm{H}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathrm{~S})\right](\mathbf{3})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Fig. S2: ${ }^{13} \mathrm{C}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathrm{~S})\right](\mathbf{3})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Fig. S3: ${ }^{29}$ Si NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathrm{~S})\right](\mathbf{3})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Fig. S4: ${ }^{1} \mathrm{H}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathrm{Se})\right]$ (4) in $\mathrm{C}_{6} \mathrm{D}_{6}$

Fig. S5: ${ }^{13} \mathrm{C}$ NMR Spectrum of $\left[\left\{\mathrm{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathrm{Se})\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Fig. S6: ${ }^{29} \mathrm{Si}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \mathrm{GeN}\left(\mathrm{SiMe}_{3}\right)_{2}(\mathrm{Se})\right](\mathbf{4})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Fig. S7: ${ }^{1} \mathrm{H}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \operatorname{SnN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{~S}_{4}\right)\right](5)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(*=$ ether impurities)

Fig. S8: ${ }^{13} \mathrm{C}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \mathrm{SnN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{~S}_{4}\right)\right](5)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

$\begin{array}{llllllllllllllllll}1 & 10 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 10 & 10 & -20 & -30 & -40 & -50 & -60 & -70 & -80\end{array}$
Fig. S9: ${ }^{29} \operatorname{Si} \operatorname{NMR}$ Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NAr}\right\} \operatorname{SnN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{~S}_{4}\right)\right](\mathbf{5})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Fig. S10: ${ }^{1} \mathrm{H}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NArN}\left(\mathrm{SiMe}_{3}\right)_{2} \operatorname{Sn}(\mu-\mathrm{Se})\right\}_{2}\right](6)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(*=$ hexane impurities)

Fig. S11: ${ }^{13} \mathrm{C}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NArN}\left(\mathrm{SiMe}_{3}\right)_{2} \operatorname{Sn}(\mu-\mathrm{Se})\right\}_{2}\right](6)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Fig. S12: ${ }^{29} \operatorname{Si}$ NMR Spectrum of $\left[\left\{\operatorname{ArNC}\left(\mathrm{N}^{i} \mathrm{Pr}_{2}\right) \mathrm{NArN}\left(\mathrm{SiMe}_{3}\right)_{2} \operatorname{Sn}(\mu-\mathrm{Se})\right\}_{2}\right](6)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Computational studies

The Wiberg Bond Index (WBI) was computed at B3LYP/6-31+G(d) level of theory. The atomic coordinates were taken from the .cif files of compounds $\mathbf{3} \& 4$ and no further geometry optimization was carried out. The Wiberg Bond Index (WBI) of Ge-S in compound $\mathbf{3}$ and $\mathrm{Ge}-\mathrm{Se}$ in compound $\mathbf{4}$ are 1.49 and 1.52 , respectively, indicating the the existence of double bond between germanium and sulfur or selenium atoms.

(40.48\%) $0.6362 * G e \quad 1 \mathrm{~s}(54.66 \%)$ p 0.82 (45.01%)d 0.01 (0.33%)
(59.52\%) 0.7715^{*} S $2 \mathrm{~s}(16.57 \%)$ p $5.02(83.16 \%)$ d $0.02(0.27 \%)$

Fig S13: Wiberg Bond Index (WBI) was computed at B3LYP/6-31+G(d) level of theory for compound 3

(44.79\%) $0.6693 *$ Ge $1 \mathrm{~s}(55.41 \%)$ p 0.80 (44.22%)d 0.01 (0.37%)
(55.21\%) 0.7430*Se 2 s($13.36 \%)$ p 6.47(86.53\%)d 0.01 (0.11%)

Fig S14: Wiberg Bond Index (WBI) was computed at B3LYP/6-31+G(d) level of theory for compound 4

