1	Supporting Information
2	
3	
4	
5	Effect of the Blocking Sites Phenomenon on the
6	Heterogeneous Reaction of Pyrene with N ₂ O ₅ /NO ₃ /NO ₂
7	Peng Zhang ^{†,*} , Wanqi Sun [†] , Bo Yang [†] , Jinian Shu [†] , and Liang Dong [‡]
8	[†] State Key Joint Laboratory of Environment Simulation and Pollution Control,
9	Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
10	Beijing 100085, China
11	[‡] National Research Center for Environmental Analysis and Measurement, Beijing
12	100029, China
13	*Corresponding author: <u>pengzhang@rcees.ac.cn</u>
14	
15	
16	
17	
18	Number of pages: 6
19	Number of figures: 4
20	1. Collecting and analyzed of products
	* Corresponding author. Tel.: +86 010 62849087; Fax: +86 010 6292 3563.
	E-mail address: pengzhang@rcees.ac.cn
	[†] Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
	*National Research Center for Environmental Analysis and Measurement, Beijing, China

22

Figure S1. The schematic diagram of collecting procedure

23 2. The partitioning ratio of PY

The particulate PY and gas-phase PY were microfiber filter (25 mm diameter, 0.7 μm pore-size, Whatman)—liquid nitrogen washing (Figure S2). The collected PY were extracted with ~20 ml dichloromethane and analyzed using GC-MS. The partitioning ratio of pyrene between the gas and particle phase under our experimental condition was estimated to 0.2 be according to the relative signal intensities of gasphase and particulate PY observed using GC-MS.

32 Figure S2. The schematic diagram of collecting procedure

33

35 3. Estimation of Oxidants Concentrations

36 3.1 Estimation of initial N₂O₅ concentration

The amount of N_2O_5 delivered in experiments was determined by the temperature of the N_2O_5 trap (243 K in our experiments) and its vapor pressure under this temperature. The initial gas-phase N_2O_5 concentration in the chamber was calculated using the equation (2).

41
$$[N_2 O_5]_0 = \frac{qt T_{chamber} P_t}{V_{chamber} T_{bathe} P_0}$$
(1)

42 $[N_2O_5]_0$ is the initial N₂O₅ concentration, P_t and P_0 is the vapor pressure of 43 N₂O₅ (~40 Pa) at 243 K and the standard atmospheric pressure (~101306 Pa), 44 respectively. $V_{chamber}$ represents the volume of the reaction chamber used in our 45 experiment, respectively. $T_{chamber}$ and T_{bathe} are the temperatures of the chamber (286 46 K) and the cooling bath (243 K). q is the flow rate of N₂ (~0.6 L min⁻¹), t is the filling 47 time (3~5 min).

48 3.2 Estimation of the $[NO_3]/[N_2O_5]$ ratio in the absence of O_3

The NO₃ concentration in the chamber was estimated by probing the decay of the isoprene. ~200 ppbv isoprene was added into the chamber before introducing $N_2O_5/NO_3/NO_2$ mixture. The decay of isoprene was on-line monitored using VUV-GTOFMS (Figure S4). The NO₃ radical concentration in the absence of O₃ are calculated with the following equations (3–6).

54
$$NO_3 + Isoprene \rightarrow \Pr oducts$$
 $k_I = 7.0 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (2)

55
$$-\frac{d[Isoprene]}{dt} \rightarrow k_1[Isoprene][NO_3]$$
(3)

56
$$In\left(\frac{[Isoprene]_{t}}{[Isoprene]_{0}}\right) = -k_{1}[NO_{3}]t$$
(4)

57
$$[NO_3] = \frac{In\left(\frac{[Isoprene]_t}{[Isoprene]_0}\right)}{-k_1 t}$$
(5)

58 *t* is the reaction time. ([Isoprene]_{*t*}/[Isoprene]₀) is the loss ratio of isoprene during 59 this period. The average NO₃ radical concentrations in the reaction processes was 60 calculated to be $\sim 3.0 \times 10^{10}$ molecules cm⁻³.

61

62 Figure S4. The isoprene decay curves by exposure to $N_2O_5/NO_3/NO_2$. The error bars

63 are obtained from three duplicate experiments.

Based on the obtained NO₃ level and the temperature dependent equilibrium constant K_{eq} shown in equation (7) (Sander et al., 2003), the N₂O₅ concentration was calculated to be ~2.0 × 10¹⁴ molecules cm⁻³.

67
$$K_{eq} = \frac{[N_2 O_5]}{[NO_2][NO_3]} = 3 \times 10^{-27} \exp(10990/T)$$
(7)

68 [N₂O₅], [NO₃], and [NO₂] are the concentrations of N₂O₅, NO₃, and NO₂, respectively.

69 **3.3 Estimation of the [NO₃]/[N₂O₅] ratio in the presence of O₃**

The NO₃ radical concentration in the presence of O₃ could not be estimated according to the decay of isoprene because part of isoprene was also consumed by O₃ in the chamber. Although the $N_2O_5(g) \longrightarrow NO_2(g) + NO_3(g)$ reaction was derived to NO₃ radical using O₃, the new equilibrium in the N₂O₅/NO₃/NO₂ system was assumed to be established in the presence of O₃. Both NO₃ radical and N₂O₅ concentration could be calculated using the following equation:

76
$$\frac{[N_2O_5]^*}{[NO_2]^*[NO_3]^*} = \frac{[N_2O_5] - k_{O_3 + NO_2}[O_3][NO_2]^*}{[NO_2]^*([NO_3] + k_{O_3 + NO_2}[O_3][NO_2]^*)} = K_{eq}$$
(8)

where $[N_2O_5]^*$, $[NO_3]^*$, and $[NO_2]^*$ are the concentrations of N_2O_5 , NO_3 , and NO_2 , respectively, in the new equilibrium system. $k_{O_3+NO_2}[O_3][NO_2]^*$ is the production rate of the NO₃ radical ($k_{O_3+NO_2} = 1.4 \times 10^{-13} \exp(-2490/T)$)(Atkinson et al., 2004). Based on the iteration method, $[NO_3]^*$, $[N_2O_5]^*$, $[NO2]^*$, the $[NO_3]/[N_2O_5]$ ratio have been calculated and shown in Table 1.

82 References

83 Sander, S. P., Friedl, R. R., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Kurylo,

- 84 M. J., Huie, R. E., Orkin, V. L., Molina, M. J., Moortgat G. K., and Finlayson-Pitts, B.
- 85 J. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
 86 Evaluation Number 14. NASA/JPL: Pasadena, CA, 2003; Vol. 02-25.
- 87 Atkinson, R.; Baulch, D.; Cox, R.; Crowley, J.; Hampson, R.; Hynes, R.; Jenkin, M.;
- 88 Rossi, M.; Troe, J., Evaluated kinetic and photochemical data for atmospheric
- 89 chemistry: Volume I-gas phase reactions of O_x, HO_x, NO_x and SO_x species. Atmos.
- 90 Chem. Phys. 2004, 4 (6), 1461-1738.
- 91 Zhang, P.; Sun, W.; Li, N.; Wang, Y.; Shu, J.; Yang, B.; Dong, L., Effects of
- 92 Humidity and [NO₃]/[N₂O₅] Ratio on the Heterogeneous Reaction of Fluoranthene
- 93 and Pyrene with N₂O₅/NO₃/NO₂. Environ. Sci. Technol. 2014, 48, (22), 13130-13137.
- 94 Yang, B.; Meng, J.; Zhang, Y.; Liu, C.; Gan, J.; Shu, J., Experimental studies on the
- 95 heterogeneous reaction of NO₃ radicals with suspended carbaryl particles. Atmos.
- 96 Environ. 2011, 45, (12), 2074-2079.