Supporting Information

Synthesis of Cu₃P nanocubes and their excellent electrocatalytic

efficiency for hydrogen evolution reaction in acidic solution

Lianbo Ma^a, Xiaoping Shen^{a*}, Hu Zhou^b, Jun Zhu^a, Chunyan Xi^a, Zhenyuan Ji^a,

Lirong Kong^a

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China,
^b School of Material Science and Engineering, Jiangsu University, Zhenjiang 212003, P. R. China

^{*} Corresponding author. Tel/Fax: +86-511-88791800.

E-mail address: <u>xiaopingshen@163.com</u> (Xiaoping Shen).

Fig. S1, Survey spectra of X-ray photoelectron spectroscopy (XPS) for both (a) Cu_2O and (b) Cu_3P nanocubes.

Fig. S2. The EDS spectrum of Cu_3P product.

Fig. S3. The length distribution diagrams of (a) Cu₂O and (b) Cu₃P nanocubes.

Fig. S4. EDX elemental mapping of Cu_3P nanotube: (a) raw, (b) P, and (c) Cu element.

Fig. S5. CV curves of the Cu_3P , Cu_2O and bare GCE.

Fig. S6. Optical photograph showing the generation of hydrogen bubbles on Cu_3P composite modified GCE.

Fig. S7. CV curves of (a) Cu_3P and (b) Cu_2O nanocubes at various sweep rates (20-180 mV/s). (c) The capacitive currents at 0.15 V as a function of scan rate for both Cu_2O and Cu_3P nanocubes.

Fig. S8. The LSV polarization curves of the Cu₂O electrode at the 1st and the 500th

cycle number.