Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

Ultralow loading palladium nanocatalysts prepared by

atomic layer deposition on three-dimensional graphite-coated nickel

foam to enhanced ethanol electro-oxidation reaction

Yiwu Jiang, Jinwei Chen*, Jie Zhang, Anqi Li, Yaping Zeng, Feilong Zhou, Gang

Wang, Ruilin Wang*

College of Materials Science and Engineering, Sichuan University, Chengdu 610065,

China

* Corresponding author. Tel & Fax: +86 28 85418018.

E-mail address: jwchen@scu.edu.cn, rl.wang@scu.edu.cn

Table S1 Comparing to the catalytic activity of as-prepared catalysts

catalysts	ECSA (m ² /g)	Peaking current density (mA/cm ²)
ALD-Pd/GNF-5	17.72	6.2
ALD-Pd/GNF-10	63.88	16.9
ALD-Pd/GNF-15	14.70	4.2

Table S2 Fitting results of EIS.

catalysts	$R_{S}(\Omega)$	CPE (Y/s ⁿ)	$R_{CT}(\Omega)$
ALD-Pd/GNF-5	3.82	1.52×10 ⁻⁴	494.1
ALD-Pd/GNF-10	2.41	2.10×10 ⁻⁴	246.6
ALD-Pd/GNF-15	2.81	1.40×10 ⁻⁴	308.7

Table S3 Comparing the experimental conditions, certain morphologies, catalytic activity, etc. with this work and previous work on Pd, PdNi catalysts reported in recent literatures.

	Exportmontal	Cortain	Surface	Peak		Dofor
Sample			compo-	current	Stability	Kelei-
	conditions	morphologies	sitions	(mA/mg _{Pd})		ence
					28 %	
Pd/	Solvothermal			700	activity	1
h-ppy	reaction	Nanoparticles	Pd	700	retention	I
					after 6000 s.	
	Wet				16 %	
PdNCs/	chemical		D 1	120.0	activity	2
G	method	Nanocubes	Pd	429.8	retention	2
					after 700 s.	
	A 4				12 %	
Pd/	Atomic	N. (* 1	Pd,	22.50	activity	3
TNTs	Ts Layer	Nanoparticles	PdO _x	2250	retention	3
	Deposition				after 3600s.	
	Floates				27 %	
Pd/	Electro-	Nou ou d	Pd,	725	activity	4
rGO	deposited	Inanorod	PdO _x	125	retention	
					after 3600s.	

Pd/GA/ NF	Self-assembly aggregation method	Nanoparticles	Pd, PdO _x	874	74.9 % activity retention after 1030 th cycle	5
Pd/ PDIL- NGS	Wet chemical method	Nanoparticles	Pd	1229.9	43 % activity retention after 7200s.	6
Pd- Ni/C	microwave- irradiation	Nanoparticles	Pd, Ni	770.7	47 % activity retention after 4800s.	7
PdNi- NNs/ RGO	Wet chemical method	Nanowire -network	Ni, Pd PdO _x	604	Dropped to approximate zero after 2000s.	8
PdNi	Wet chemical method	Irregular porous nanoparticles	Ni, Pd PdO _x	1110	52 % activity retention after 1000s.	9
Pd/	Wet	Nanoparticles	Pd	2939	59 %	10

CNTs	chemical				activity	
	method				retention	
					after 500 th	
					cycle.	
Pd/ CNTs	alf again blad	Nanoparticles			38 %	
	and heat- treatment		D 1	2050	activity	11
			Pd	2858	retention	11
					after 1000s.	
	, , -				4.1 %	
ALD-	Atomic		D 1		activity	This
Pd/	Layer	Nanoparticles	Pd	920	retention	work
GNF					after 4000s.	

References

- 1. Z. Bai, Q. Zhang, J. Lv, S. Chao, L. Yang and J. Qiao, *Electrochimica Acta*, 2015, **177**, 107-112.
- 2. Y. Zhang, Q. Huang, G. Chang, Z. Zhang, T. Xia, H. Shu and Y. He, *Journal of Power Sources*, 2015, **280**, 422-429.
- 3. L. Assaud, N. Brazeau, M. K. S. Barr, M. Hanbücken, S. Ntais, E. A. Baranova and L. Santinacci, *ACS Applied Materials & Interfaces*, 2015, 7, 24533-24542.
- 4. M. Sawangphruk, A. Krittayavathananon and N. Chinwipas, *J. Mater. Chem. A*, 2013, **1**, 1030-1034.
- 5. a. K. N. H. Chi-Him A. Tsang, K. S. Hui, L. Rend, *J. Mater. Chem. A*, 2014, **2**, 17986–17993.
- 6. S. Li, H. Yang, R. Ren, J. Ma, J. Jin and J. Ma, *Journal of Power Sources*, 2015, **294**, 360-368.

- 7. R. S. Amin, R. M. A. Hameed and K. M. El-Khatib, *Applied Catalysis B: Environmental*, 2014, **148-149**, 557-567.
- 8. B. Y. Duan Bin, Fangfang Ren, Ke Zhang, Ping Yang, Yukou Du, J. Mater. Chem. A, 2015, **3**, 14001–14006.
- 9. C. Zhu, D. Wen, M. Oschatz, M. Holzschuh, W. Liu, A.-K. Herrmann, F. Simon, S. Kaskel and A. Eychmüller, *Small*, 2015, **11**, 1430-1434.
- 10. M. S. Ahmed and S. Jeon, *Journal of Power Sources*, 2015, 282, 479-488.
- Y. C. Jin Zhang, Shanfu Lu, Lichao Jia, Pei Kang Shenc, San Ping Jian, *Chem. Commun.*, 2014, **50**, 13732--13734.