Electronic Supplementary Information

Influence of solution-deposited rutile layer on morphology of TiO₂ nanorod arrays and performance of nanorod-based dye-

sensitized solar cells

Zhixin Jin,** Yinglin Wang,** Shixin Chen, Gang Li, Lingling Wang, Hancheng Zhu, Xintong Zhang,* Yichun Liu

Center for Advanced Optoelectronic Functional Materials Research, and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China Tel./Fax: +86 431 85099772; E-mail: xtzhang@nenu.edu.cn.

Figure S1. Raman spectrum of the rutile seed layer deposited onto conducting glass *via* hydrolysis of TiCl₄ solution.

Table S1. Structural properties of TiO_2 NR arrays grown on bare FTO and TiO_2 seed layers which were deposited from $TiCl_4$ precursor solutions with concentrations of 0.05, 0.2, and 0.4 M, respectively.

samples	The density of TiO ₂ NRs (number μm ⁻²)	The length of TiO ₂ NRs (μm)	The diameter of TiO ₂ NRs (nm)
FTO-NR	24±4	1.2±0.05	82±25
0.05 M-NR	39±8	1.3 ± 0.05	80±24
0.2 M-NR	58±8	1.3 ± 0.06	60 ± 10

0.4 M-NR 99±13	1.5 ± 0.06	52±9
-----------------------	----------------	------

Figure S2. Top-view SEM images of the TiO_2 NR arrays grown at 150 °C for 30 min on bare FTO (a) and TiO_2 seed layers which were deposited from $TiCl_4$ precursor solutions with concentrations of 0.05 (b), 0.2 (c), and 0.4 M (d), respectively.

Table S2. Series resistance (R_s) , charge transfer resistance (R1), interfacial recombination resistance (R2) from EIS spectra calculated by equivalent circuit as shown in Fig.8.

samples	$\mathrm{R}_{\mathrm{s}}\left(\Omega ight)$	R1 (Ω)	R2 (Ω)
0.05 M-NR	30.74	1.14	331.2
0.2 M-NR	31.33	1.31	304.6
0.4 M-NR	38.45	2.89	237.4