Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Shifting UV-Vis spectrum through rational structural modifications of zinc porphyrin

photoactive compounds

Qudsia Arooj¹, Gregory Wilson² and Feng Wang¹*

¹Molecular model Discovery laboratory, Faculty of Science, Engineering and Technology, Department

of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne,

Victoria, 3122, Australia

² CSIRO Energy, Newcastle Energy Centre, 10 Murray Dwyer Cct Mayfield West, NSW, 2304 Australia

*Corresponding author. Tel: +61 3 9214 5056; fax: +61-3-9214-5921

E-mail addresses: fwang@swin.edu.au (F.Wang)

Table S1. Selected Calculated Bond Lengths (Å) for the Four Oxidation States of the Porphyrin macrocycles (in Chloroform)

Bond	Bond length (A)				
	Chloroform				
	Pzn-EDOT	Zn-P- π_1	Zn-P- π_2	Zn-P- π_3	Zn-P- π_4
$C_R - C_m^5$	1.495	1.493	1.492	1.481	1.481
$C_{m}^{5} - C_{\alpha}^{6}$	1.409	1.410	1.410	1.409	1.412
$C_{\alpha}^{6} - C_{\beta}^{7}$	1.446	1.447	1.448	1.446	1.446
$C_{\beta}^{7} - C_{\beta}^{8}$	1.361	1.359	1.359	1.360	1.360
$C_{\beta}^{8}-C_{\alpha}^{9}$	1.445	1.446	1.446	1.446	1.445
$C_{\alpha}^{9} - C_{m}^{10}$	1.408	1.405	1.405	1.406	1.406
$C_{m}^{10} - C_{\alpha}^{11}$	1.409	1.411	1.411	1.411	1.410
$C_{\alpha}^{11} - C_{\beta}^{12}$	1.445	1.444	1.444	1.444	1.445
$C_{\beta}^{12} - C_{\alpha}^{13}$	1.361	1.362	1.362	1.362	1.362
$C_{\beta}^{13} - C_{\alpha}^{14}$	1.445	1.444	1.444	1.444	1.445
$C_{\alpha}^{14} - C_{m}^{15}$	1.409	1.409	1.408	1.409	1.408
$C_{\alpha}^{6} - N^{3}$	1.376	1.374	1.374	1.374	1.374
$C_{\alpha}^{9} - N^{3}$	1.378	1.380	1.380	1.379	1.379
$C_{\alpha}^{11} - N^4$	1.377	1.375	1.375	1.376	1.376
$C_{\alpha}^{14} - N^4$	1.377	1.378	1.378	1.377	1.378
N ³ –Zn	2.051	2.050	2.051	2.050	2.052
N ⁴ –Zn	2.049	2.051	2.051	2.047	2.050
$C_{R'} - C_{ac}^{\alpha}$	1.419	1.422	1.428	1.440	1.443
$C_{ac}^{\ \alpha} - C_{ac}^{\ \beta}$	1.376	1.373	1.370	1.365	1.493
$C_{ac}^{\ \beta} - C_{ac}^{\ \gamma}$	1.487	1.490	1.487	1.491	1.426
$C_{ac}^{\ \beta} - C_{Cy}$	1.424	1.425	1.424	1.426	1.648
C _{Cy} -N _{Cy}	1.165	1.165	1.165	1.165	1.215
$C_{ac}^{\gamma} - O^1$	1.219	1.218	1.216	1.216	1.346
$C_{ac}^{\gamma} - O^2$	1.351	1.350	1.348	1.348	

Figure S2. Single point calculated frontier MO (Molecular orbitals) using B3LYP/6-31G* model in vacuum and Chloroform along with the comparison of charge density of HOMOs and LUMOs with the reference dye Pzn-EDOT and *meso*-substituted zinc porphyrin dyes.

Fig. S3 Single point calculated frontier MO (Molecular orbitals) using B3LYP/6-31G* model in vacuum and Chloroform along with the comparison of charge density of HOMOs and LUMOs with the reference dye Pzn-EDOT and π -substituted zinc porphyrin dyes.

Vacuum

Fig. S4. Calculated excitations of three examples of meso-substituted porphyrins (black vertical lines) in polarised continuum and vacuum. The *y* axes for are scaled to the maximum oscillator strength for the examples studied. Inset: calculated excitations for the parent EDOT porphyrin (red vertical lines).

Fig. S5. Calculated excitations of four examples of Pi Bridge porphyrins (black vertical lines) in polarised continuum and vacuum. The *y* axes for are scaled to the maximum oscillator strength for the examples studied. Inset: calculated excitations for the parent EDOT porphyrin (red vertical lines).