Supporting Information

γ -radiation effect on Th⁴⁺ extraction behaviour of TODGA/[C₂mim][NTf₂]:

identification and extractability study of radiolytic products

Weijin Yuan,^{a+} Congzhi Wang,^{b+} Yinyong Ao,^c Long Zhao,^{a*} Weiqun Shi,^{b*} Maolin Zhai^c

^{*a*} School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R.

China

^b Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of

Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences,

Beijing 100049, China.

^cBeijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory for Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

*Corresponding authors: E-mail: ryuuchou@sjtu.edu.cn;E-mail:shiwq@ihep.ac.cn

Page No. Contents

- S 3 Characterization part
- S 5 Table S1. UPLC mobile phases and gradient elution details
- **S 6** Table S2. γ -radiation effect on E_{Th} of TODGA extraction system
- Table S3. The concentration of TODGA dissolved in $[C_2mim][NTf_2]$ (a) and in S-7 dodecane (b) after irradiated.
- S-8 Table S4. Theoretical Cartesian coordinates (in Å) for the structure of

[Th(TMDGA)₃]⁴⁺ in the gas-phaseusing the B3LYP method.

Table S5. Theoretical Cartesian coordinates (in Å) for the structure of $[Th(TMDGA-S-12 C2mim)_3]^{5+}$ in the gas-phaseusing the B3LYP method.

- S 17 Fig.S1 XPS spectra of the sediment (a) and $Th(SO_3)_2$ (b).
- Fig.S2 UPLC/Q-TOF-MS spectra of TODGA/dodecane before (A) and after S-18 irradiation (B).
- S 19 Fig.S3 The area of extracted-ion peak of DOAA measured by UPLC/Q-TOF-MS
 Fig.S4 Extraction of Th⁴⁺ using irradiated TODGA/dodecane (a) or unirradiated
 samples (b). ([TODGA] in irradiated TODGA/dodecane was detected by UPLC-Q-S 20
 TOF-MS)

Characterization part

XPS analysis:the sediment, which appeared after extraction, was collected after centrifuging and purification. The X-ray photoelectron spectra (XPS) of the sediment was recorded by an AXIS-Ultra instrument fromKratos Analytical using monochromatic Al Kα radiation and low energy electron flooding for charge compensation.

Quantitative/semi-quantitative analysis using UPLC-Q-TOF-MS: An equal volume of irradiated/unirradiatedsample was added to 2 mL acetonitrile, followed by mixing for 10 min. The supernatant was obtained by centrifugation at 12,000 rpm for 10 min and was directly used for UPLC-Q-TOF-MS (Waters MicromassQ-TOFPemier mass spectrometer). UPLC was performed at 45 °C using an AcquityUPLCBEHC₁₈ column (100 mm × 2.1mm, i.d.: 1.7 μ m; Waters, Milford, USA), equipped with an AcquityUPLCVanGuardprecolum (5 mm × 2.1 mm, i.d.: 1.7 μ m; Waters). The elution gradient used has been shown in Table S1. The flow rate was 0.4 mL min⁻¹ and the injection volume was 2 μ L. MS condition: capillary potential 3.0 kV; sampling cone potential 35.0 V; desolvation gas flow 600.0 L·h⁻¹; collision energy 6.0 eV; scan range m/z 100-2000; scan time 0.3 s; inter-scan time 0.02 s.

MALDI–FTMS: Matrix Assisted Laser Desorption Ionization/ Fourier Transform Mass spectrometry (MALDI-FTMS)measurements were recorded in positive mode. Experiments were conducted using a 7.0 T SolariXFTMS system equipped with a dual ESI-MALDI source (Bruker Daltonics). The intensity of MALDI-laser irradiation was 15% with frequency at 1000 Hz. The sample was diluted with acetonitrile by 5 times, 100 mg·mL⁻¹ of 2,5-dihydroxybenzoic acid matrix was prepared in 50% acetonitrile in water (0.1% Trifluoroacetic acid), and mixed at the ratio of 3:1 with sample, 1 µL of mixture was

deposited on the stainless steel target and dried to produce a thinfilm of homogeneous crystals. The mass range (m/z)was from 80 to 1000.

Time(min)	Solvent A	Solvent B
	(0.2% aqueous formic acid) (%)	(0.2% aqueous acetonitrile) (%)
0	95	5
0.2	95	5
2.2	75	25
4.5	70	30
6.0	60	40
12.0	1	99
15.5	1	99
16.5	95	5
19.0	95	5

Table S1.UPLC mobile phases and gradient elution details

		E_{Th}	
- 4.5.	(a) TODGA/[C2mim][NTf2 (b) TODGA/[C2mim][NTf2		(c)TODGA/dodecan
Dose(kGy)]]	e
	[HNO ₃]=0.01M	[HNO ₃]=3M	[HNO ₃]=3M
0	99.4	88.7	93.0
100	98.8	89.9	89.5
200	99.2	84.7	87.3
300	98.6	84.5	80.2
400	98.9	79.4	60.4
500	98.5	73.4	54.3
800	98.5	59.1	21.9
1000	98.6	54.0	16.3

Table S2. γ -radiation effect on $E_{\rm Th}$ of TODGA extraction system

Dose (kGy)	(a) $[10DGA]$ in $[C_2mim][N1f_2]$	(b) [IODGA] in dodecane
	mmol·L ⁻¹	mmol·L ⁻¹
0	10.00	10.00
10	9.43	-
20	9.39	9.52791
30	8.81	-
50	-	9.35511
80	-	8.76592
100	7.94	8.58093
200	6.88	7.48093
300	5.93	6.99342
400	5.20	5.86319
500	4.51	5.22512
800	3.01481	2.74654
1000	2.1	1.78

Table S3. The concentration of TODGA dissolved in $[C_2mim][NTf_2]$ (a) and in dodecane (b) after irradiated.

-: not measured

Standard orientation:					
	Coordinates (Angstroms)				
Atomic Number -	Х	Y	Z		
6	-2.158713	0.033555	0.044631		
6	-1.023172	0.973812	-0.353326		
1	-0.630939	1.510591	0.519403		
1	-1.363740	1.708785	-1.094015		
6	1.149625	0.892662	-1.350550		
6	2.130606	-0.125746	-1.927160		
1	0.855116	1.629593	-2.107940		
1	1.591895	1.423108	-0.497360		
8	0.002748	0.152785	-0.920394		
8	-2.005820	-1.206163	-0.227195		
8	1.791747	-1.356921	-1.865400		
6	-3.444520	1.940420	0.949743		
1	-2.656350	2.568574	0.538030		
1	-3.482005	2.073360	2.034956		
6	-4.337858	-0.371969	1.056713		
1	-4.058791	-1.410604	0.897649		
1	-5.232978	-0.126588	0.477466		
7	-3.232922	0.511489	0.639889		
6	3.692203	1.694550	-2.524044		
1	4.694601	1.779376	-2.095765		
1	3.022213	2.349649	-1.969674		
6	4.225620	-0.672079	-3.045459		
1	4.471664	-0.341389	-4.058135		
1	3.785201	-1.665616	-3.076309		

Table S4. Theoretical Cartesian coordinates (in Å) for the structure of $[Th(TMDGA)_3]^{4+}$ in the gasphase using the B3LYPmethod.

7	3.266618	0.281285	-2.456856
1	-4.400684	2.254902	0.522584
1	-4.544917	-0.199134	2.116291
1	5.140233	-0.680712	-2.445049
1	3.727229	2.013574	-3.569946
6	-1.932243	-2.087784	-4.068594
6	-2.851436	-3.204234	-3.578268
1	-2.838552	-4.057515	-4.267849
1	-3.885019	-2.847856	-3.480341
6	-3.114476	-4.658277	-1.697274
6	-2.459912	-4.950462	-0.349229
1	-4.1562	-4.338776	-1.570052
1	-3.095807	-5.545909	-2.342891
8	-2.353407	-3.605757	-2.298103
8	-0.994919	-1.721174	-3.280285
8	-1.40028	-4.293968	-0.065107
6	-3.207715	-1.94254	-6.180235
1	-3.914554	-2.626394	-5.713086
1	-2.774929	-2.417837	-7.065535
6	-1.240114	-0.486624	-5.76965
1	-0.397158	-0.352055	-5.096326
1	-1.808536	0.444091	-5.857221
7	-2.124391	-1.549214	-5.25583
6	-4.203002	-6.629515	0.15025
1	-3.989036	-7.687441	0.323936
1	-4.515178	-6.506337	-0.885614
6	-2.39812	-6.132784	1.780234
1	-3.181407	-6.055595	2.539054
1	-1.605143	-5.41964	1.991553
7	-2.989534	-5.845332	0.460078

1	-3.747244	-1.043705	-6.490604
1	-0.882865	-0.776757	-6.7614
1	-2.002436	-7.152836	1.783794
1	-5.015706	-6.320229	0.814316
6	1.545639	-2.830159	1.781242
6	2.309769	-3.960943	1.096096
1	2.182401	-4.90797	1.635081
1	3.381606	-3.731126	1.038316
6	2.388838	-5.099435	-1.005589
6	1.704774	-5.076528	-2.370432
1	3.462762	-4.895548	-1.098945
1	2.257591	-6.073356	-0.516597
8	1.766345	-4.075754	-0.222854
8	0.674943	-2.21085	1.079244
8	0.747026	-4.243922	-2.524345
6	2.815125	-3.212543	3.866984
1	3.407584	-3.91798	3.286752
1	2.320689	-3.743752	4.685585
6	1.06075	-1.462528	3.738577
1	0.243244	-1.110498	3.114249
1	1.746386	-0.640679	3.965747
7	1.797485	-2.532174	3.039982
6	3.200076	-6.875581	-3.168522
1	2.829038	-7.860772	-3.463933
1	3.555911	-6.932551	-2.14112
6	1.484406	-5.880894	-4.659969
1	2.270727	-5.785528	-5.413535
1	0.793286	-5.045131	-4.736969
7	2.108893	-5.891566	-3.323892
1	3.485568	-2.459032	4.28937

1	0.667506	-1.86338	4.676633
1	0.956361	-6.825965	-4.818561
1	4.031487	-6.600348	-3.824142
90	-0.198919	-2.507348	-1.146637

Table S5.	Theoretical	Cartesian	coordinates	(in Å)	for th	e structure	of [Th(TMDGA	$/C2mim)_3$] ⁵⁺ in
the gas-pl	hase using the	e B3LYP r	nethod.							

	Standard o	rientation:			
Coordinates (Angstroms)					
AtomicNumber -	Х	Y	Z		
6	-2.054750	0.044520	0.631023		
6	-1.002391	0.990792	0.063373		
1	-0.555866	1.607989	0.848150		
1	-1.468917	1.653418	-0.683165		
6	1.072537	0.923464	-1.286080		
6	1.822673	-0.200411	-2.011305		
1	0.598279	1.557082	-2.042703		
8	-0.008877	0.176361	-0.567622		
8	-2.061646	-1.157299	0.205580		
8	1.632707	-1.415356	-1.623082		
6	-2.995868	1.902561	1.964731		
1	-2.568582	2.583416	1.228716		
1	-2.473968	2.011063	2.921352		
6	-3.947916	-0.388762	2.108994		
1	-3.726041	-1.421285	1.849320		
1	-4.945226	-0.117639	1.749242		
7	-2.943881	0.501716	1.502647		
6	2.940185	1.456337	-3.487007		
1	3.917736	1.477492	-3.972849		
1	2.961494	2.174902	-2.666955		
6	3.363773	-0.970542	-3.748980		
1	3.101349	-0.889241	-4.810228		
1	3.056257	-1.940255	-3.364900		
7	2.693076	0.094247	-2.992456		

1	-4.042668	2.179619	2.108121
1	-3.922704	-0.261635	3.195210
1	4.448591	-0.860018	-3.653269
1	2.186357	1.755413	-4.225613
6	-1.781483	-2.324197	-3.929947
6	-2.923892	-3.256759	-3.505188
1	-2.816204	-4.197268	-4.055634
6	-3.405251	-4.526294	-1.438990
6	-2.870071	-4.689336	-0.020007
1	-4.459549	-4.235194	-1.435308
1	-3.304070	-5.479286	-1.982564
8	-2.605055	-3.522809	-2.071201
8	-1.087926	-1.747589	-3.009785
8	-1.717519	-4.210457	0.236861
6	-2.307680	-2.724248	-6.323742
1	-3.372251	-2.776883	-6.092218
1	-1.921444	-3.728243	-6.538275
6	-0.429082	-1.248343	-5.661977
1	0.111884	-0.889988	-4.789458
1	-0.802773	-0.398677	-6.242102
7	-1.558040	-2.083950	-5.232724
6	-4.900005	-5.963854	0.590324
1	-4.980219	-6.888991	1.165331
1	-5.001130	-6.217464	-0.464820
6	-3.130988	-5.489167	2.270691
1	-3.943392	-5.192813	2.940551
1	-2.262306	-4.855903	2.435909
7	-3.588998	-5.349409	0.877916
1	-2.193814	-2.118242	-7.224533
1	0.240114	-1.835309	-6.301506

1	-2.877194	-6.534581	2.471628
1	-5.712363	-5.295025	0.893695
6	1.185666	-3.177692	2.131649
6	2.081641	-4.168405	1.395786
1	2.077601	-5.148522	1.880870
1	3.114864	-3.785470	1.380161
6	2.390415	-5.102026	-0.868434
6	1.761469	-4.790307	-2.235805
1	3.415121	-4.715277	-0.873726
8	1.582344	-4.262755	0.057814
8	0.459306	-2.401203	1.428497
8	0.607626	-4.220910	-2.261525
6	2.103804	-3.957351	4.292490
1	2.994848	-4.268033	3.747114
1	1.565072	-4.836719	4.660915
6	0.336492	-2.211148	4.204247
1	-0.403067	-1.784090	3.530611
1	0.929913	-1.414595	4.663641
7	1.220813	-3.120787	3.456408
6	3.713419	-5.792394	-3.404860
1	3.807538	-6.340172	-4.344746
1	3.830311	-6.508008	-2.590899
6	1.835401	-4.803895	-4.680799
1	2.570554	-4.215853	-5.241535
1	0.921566	-4.228845	-4.551609
7	2.389493	-5.153856	-3.365918
1	2.427464	-3.364810	5.151081
1	-0.161775	-2.776595	4.997057
1	1.623227	-5.718082	-5.244492
1	4.515591	-5.045558	-3.363683

90	-0.347564	-2.519052	-0.868267
6	1.849485	1.835909	-0.397020
7	1.752190	3.210353	-0.433700
6	2.713505	3.751786	0.392645
6	0.829962	4.016928	-1.240119
1	2.827503	4.818417	0.521283
1	1.006514	5.068503	-1.012318
1	1.009436	3.863588	-2.308490
1	-0.210158	3.781551	-0.999241
7	2.885512	1.543224	0.454576
6	3.413164	2.721770	0.943938
6	3.361947	0.183998	0.782615
6	4.418410	0.165331	1.883781
1	3.768894	-0.252352	-0.135521
1	2.484028	-0.405584	1.071020
1	4.696854	-0.874255	2.081225
1	5.333306	0.687112	1.588882
1	4.048553	0.595055	2.819675
1	4.239142	2.748602	1.635835
6	-4.328054	-2.797667	-3.722721
7	-5.305985	-3.569357	-4.311353
6	-6.432063	-2.798341	-4.504264
6	-5.201461	-4.970104	-4.734940
1	-7.330421	-3.194146	-4.955453
1	-6.168674	-5.280421	-5.131280
1	-4.454832	-5.083141	-5.526619
1	-4.951069	-5.617426	-3.890414
6	-6.160688	-1.546715	-4.041053
7	-4.864729	-1.544672	-3.564788
6	-4.162036	-0.381283	-2.984771

6	-5.065949	0.832664	-2.789055
1	-3.334865	-0.128887	-3.656414
1	-3.729934	-0.706051	-2.031299
1	-4.475481	1.636087	-2.338440
1	-5.453534	1.218449	-3.736270
1	-5.905450	0.620463	-2.120015
1	-6.790987	-0.672741	-4.021887
6	2.479336	-6.531599	-0.441850
7	3.621409	-7.115408	0.059481
6	3.405600	-8.468218	0.210757
6	4.902522	-6.462432	0.352720
1	4.167366	-9.133825	0.590161
1	5.581188	-7.210683	0.763055
1	5.350891	-6.057077	-0.559172
1	4.776952	-5.667485	1.092502
7	1.565252	-7.541299	-0.603777
6	0.196597	-7.376526	-1.136914
6	-0.636117	-8.653281	-1.065049
1	0.288013	-7.045151	-2.176378
1	-0.276888	-6.567342	-0.569194
1	-1.634443	-8.439141	-1.458300
1	-0.219284	-9.455792	-1.680265
1	-0.752939	-9.013964	-0.038622
6	2.133232	-8.732162	-0.197248
1	1.605628	-9.671525	-0.227779

Fig.S1 XPS spectra of the sediment (a) and $Th(SO_3)_2$ (b).

Fig.S2 UPLC/Q-TOF-MS spectra of TODGA/dodecane before (A) and after irradiation (B).

Fig.S3The area of extracted-ion peak of DOAA measured by UPLC/Q-TOF-MS $\,$

Fig.S4 Extraction of Th⁴⁺ using irradiated TODGA/dodecane (a) or unirradiated samples (b). ([TODGA] in irradiated TODGA/dodecane was detected by UPLC-Q-TOF-MS)