Supplementary Information

to

Facile and creative design of hierarchical vanadium oxides@graphene nanosheets patterns

Jiucun Chen,*^{ab} Wenjun Li,^{ab} Jian Jiang,^{ab} Chao Wu,^{ab} Yinqin Liu^{ab}

 ^a Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University,
^b Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Chongqing 400715, P.R. China

Correspondence: chenjc@swu.edu.cn

Fig S1. The procedure of synthesis the multi-layer GNS/VO_x cathode materials by spin coating briefly.

Fig. S2 XRD patterns of VO_x without annealing and reduced GO which annealed at 500 °C.

Fig. S3 Performance of 3-layer VOx without GNS cathode materials. (a) Rate performance of 3-layer VO_x in the voltage range of 2.0-4.5 V versus Na/Na⁺; (b) Long-term cycling performance of 3-layer VO_x electrode at a current density of 0.2 A/g in the voltage range of 2.0-4.5 V versus Na/Na⁺.

Fig. S4 Cycling performance for four types of multi-layer electrode with different GO concentrate in the voltage range of 2.0-4.5 V versus Na/Na⁺.

Fig. S5 Electrochemical impedance spectroscopy of multi-layer electrodes with different GO's concentration.

Fig. S6 Rate performance for four types of multi-layer electrode with different layer in the voltage range of 2.0-4.5 V versus Na/Na⁺.