Electrospinning preparation of H₄SiW₁₂O₄₀/Polycaprolactam

composite nanofibrous membrane and its greatly enhanced

photocatalytic activity and mechanism

Wei Li^a, Tingting Li^{a*}, Xuegang Ma^b, Yuanliang Li^b, Libao An^c, Zhiming Zhang^{a*} a College of Material Science and Engineering, North China University of Science and Technology, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, Tangshan 063009, China b Analysis and Testing Center, North China University of Science and Technology, Tangshan, China, 063009.

c College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063009, China

*Correspondence to: Zhiming Zhang (E-mail: <u>zhangzhiming1942@163.com</u>), Tingting Li (E-mail: <u>litingting2046@163.com</u>)

Fig. S1 UV-vis spectra of MO vs. photoreaction time catalyzed by the composite nanofibrous membrane with different mass ratio of $H_4SiW_{12}O_{40}$ to PA6 (a) 0.25:2.0, (b) 0.5:2.0, (c) 0.75:2.0, (d) 1.0:2.0.

Fig. S2 Photodegradation of MO over (a) only UV irradiation, (b) PA6 nanofibrous membrane and (c) SiW₁₂ against irradiation time.

Fig. S3 FT-IR spectra of $H_4SiW_{12}O_{40}/PA6$ composite nanofibrous membrane before and after catalysis.

Fig. S3 shows the FT-IR spectra of $H_4SiW_{12}O_{40}/PA6$ composite nanofibrous membrane before and after a three-cycle photocatalytic experiment. It is obvious that the composite sample after catalysis displays four discernible peaks between 790 cm⁻¹ and 1100 cm⁻¹, agreeing with Keggin unit well, which indicates that the Keggin structure of $H_4SiW_{12}O_{40}$ remains intact in the membrane after the water has been flowed through the system.