Supplementary Information

Shape-controlled synthesis of 3D copper nicotinate hollow microstructures and their catalytic properties

Shanshan Fu, ^a Qingdong Xia, ^a Shuang Li, ^a Guojuan Ren, ^a Fang Chai, ^{*a} Chungang

Wang*^b and Fengyu Qu*^a

^{† a} Key Laboratory of Design and Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, P. R. China. E-mail: fangchai@gmail.com, <u>qufengyuchem@hrbnu.edu.cn</u>

^b Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China. E-mail: <u>wangcg925@nenu.edu.cn</u>

Fig. S1 XRD pattern of copper nicotinate hollow microstructures with different a. 1min, b. 5min, c. 10min, d. 20min, e. 30min, f. 40min.

Fig. S2 EPR experimental spectra at 100 K of copper nicotinate solutions in ethanol with concentration of 0.1 M. In the experiment, a Bruker ESRA-300 spectrometer operating at 9.45 GHz (X band) at 100 K was used to take EPR data of the samples in a quartz capillary tube.

Fig. S3 EDX spectrum of Copper nicotinate hollow microstructures (0.20 M nicotinic acid).

Fig. S4 Representative SEM images of copper nicotinate reaction of 30 min with various concentrations: (a) 0.10 M, (b) 0.15 M, (c) 0.20 M, (d) 0.30 M. (Inset is magnified images, scaleplate: $1 \mu m$)

Fig. S5 The UV-vis characteristic peaks of freshly prepared 4-nitrophenol and 4-nitrophenolate ion aqueous solution at 317 and 400 nm, respectively.

Fig. S6 (a) Absorption spectra of aqueous mixture solutions of 4-NP and NaBH₄ at different concentrations of 4-NP. (b) Plot of the peak absorbance against the concentration of 4-NP.

Fig. S7 UV–vis absorption spectra of reduction of 4-NP by NaBH₄ under the catalysis of copper nicotinate (0.20 M) with different reaction time (a) 1 min, (b) 3 min, (c) 5 min, (d) 8 min, (e) 10 min, (f) 15 min, (g) 20 min, (h) 40 min, (i) 70 min. (insets: the corresponding $\ln(C_{(t)}/C_{(0)})$ versus reaction time for reduction of 4-NP.)

Fig. S8 UV-vis spectra of the reduction of 4-NP by NaBH₄ in the presence of copper nicotinate recorded for the 2^{nd} (a), 3^{rd} (b), 4^{th} (c), 5^{th} (d), 6^{th} (e), 7^{th} (f), 8^{th} (g), 9^{th} (j), 10^{th} (h), insets: the corresponding $\ln(C_{(t)}/C_{(0)})$ versus reaction time for reduction of 4-NP.

Fig. S9 UV-vis spectra of the reduction of 4-NP by NaBH₄ in the presence of copper nicotinate recorded for the 11th (a), 12th (b), 13th (c), 14th (d), 15th (e), 16th (f), 17th (g), 18th (k), 19th (h), 20th (j), insets: the corresponding $\ln(C(t)/C(0))$ versus reaction time for reduction of 4-NP.

Fig. S10 Conversion (%) of 4-NP with the change of time by copper nicotinate as catalyst with various concentrations nicotinic acid (a) 0.10 M, (b) 0.15 M, (c) 0.30 M. The reusability of copper nicotinate as a catalyst for the reduction of 4-NP with NaBH₄ (d), (e), (f).

Catalyst	Туре	Initial concentration	Final amount of	Rate constant	References
		of the 4-NP	catalyst		
copper nicotinate	hollow microstructures	$1.09 \times 10^{-4} \mathrm{M}$	0.00916 mg/mL	$2.999 \times 10^{-2} \mathrm{s}^{-1}$	This work
Cu nanoparticles	nanoparticles	$0.6 \times 10^{-4} \mathrm{M}$	0.25 mg/mL	$0.159 \times 10^{-2} \mathrm{s}^{-1}$	1
CuO	Flowerlike	$1.0 \times 10^{-4} \mathrm{M}$	0.01 mg/mL	$1.06 \times 10^{-2} \mathrm{s}^{-1}$	2
nanostructures PANI/Ag	composites	$0.93 \times 10^{-4} \text{ M}$	0.333 mg/mL	2.56×10 ⁻² s ⁻¹	3
Fe ₃ O ₄ -@C@	Supported	$0.099 \times 10^{-4} \text{ M}$	0.00495 mg/mL	$0.372 \times 10^{-2} \mathrm{s}^{-1}$	4
Ag					

Table S1 Comparison of pseudo-first-order rate constants for 4-NP reduction by copper nicotinate

Reference:

(1) P. Deka, R. C. Deka and P. Bharali, New J. Chem., 2014, 38, 1789-1793.

(2) Wei. Che, Y. H. Ni, Y. X. Zhang and Y. Ma, *Journal of Physics and Chemistry of Solids*, 2015, 77, 1-7.

(3) B. Ma, M. Wang, D. Tian, Y. Y. Pei and L. J. Yuan, RSC Adv., 2015, 5, 41639-41645.

(4) Q. An, M. Yu, Y. Zhang, W. Ma, J. Guo, C. Wang, J. Phys. Chem. C, 2012, 116, 22432-22400.