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The aim of this Supporting Information (SI) is to calculate the pulse energy absorbed by 

individual ClAlPc molecules (p) dissolved in ethanol (EtOH) at two concentrations, 4.21017 cm3 

and 1.21017 cm3. Given that the Beers law equation (eqn (5)) and the associated population-change-

rate equations (eqn (6)-(8)) govern the time rate of pulse energy absorption by ClAlPc molecules in a 

unit of volume, collectively, we numerically derive p by tracking the excitation and relaxation 

behaviors of individual ClAlPc molecules (in addition to alternately integrating eqn (5) and eqn (6)-

(8) to evaluate the intensity I(z,r,t) and population densities of the S0, S1 and S2 states, denoted by 

NS0(z,r,t), NS1(z,r,t) and NS2(z,r,t), respectively). Here, z denotes the penetration depth of a pulse into 

the sample and falls in the range [0, L=1 mm] with L being the sample thickness, r the lateral distance 

relative to the laser beam axis and t the time relative to the pulse peak. In the following, we first show 

how we evaluate I(z,r,t) and Ns(z,r,t) specified by the subscripts by alternately integrating eqn (5) 

and eqn (6)-(8). Afterward, we explain how we derive p by counting the numbers of one-photon 

S0)S1, two-photon S0)S2 and one-photon 0)S1)S2 excitation processes that individual 

ClAlPc molecules experience in the course of pulse-matter interaction. 

As mentioned in the Main Text, The intensity of each laser pulse incident on the samples front 

surface at a certain position z relative the beam waist is denoted by I(z=0,r,t)=Iz(r,t) given by eqn (1). 

When each pulse has a width of =19 ps (HWe1M), we ignore the pulse for the time beyond 3 (57 

ps) when simulating the pulse-matter interaction. This is because the intensity outside the time range 

[3, 3] is vanishingly small. When the pulse-matter interaction starts at t=3, ClAlPc/EtOH is in 

full thermodynamic (thermal, mechanical and chemical) equilibrium with NS1(z,r,3)=NS2(z,r,3) 

=0 and NS0(z,r,3)=4.21017 cm3 or 1.21017 cm3 throughout the whole solution. 

In our numerical integration of I(z,r,t) and Ns(z,r,t) and derivation of p, we slice the sample into 

10 layers and divide each pulse into 5000 temporal segments. Therefore, each layer of the sample has 

a thickness of z=0.1 mm and each temporal segment of a pulse has a width of t=6/5000=22.8 fs. 

Labeling each layer of the sample by an integer m ranging between 1 and 10, we denote the depths for 

the leading and closing edges of the mth layer by zmb=(m1)z and zmf=z(m+1)b=mz, respectively. 

Labeling each temporal segment of a pulse by an integer n ranging between 1 and 5000, we denote the 

times for the leading and the closing edges of the nth temporal segment by tnb=3+(n1)t and 
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tnf=t(n+1)b=3+nt, respectively. 

First of all, we deal with the interaction of a 19 ps pulse with the entrance layer (m=1) of the sample 

ranging between z1b=0 and z1f=0.1 mm. By substituting the incident intensity I(z1b,r,t)=Iz(r,t), with 

t=tnb (1n5000), for I(z,r,t) on the right hand sides of eqn (6)-(8) and then integrating these three 

equations over t from tnb to tnf, we obtain NS0(z1b,r,t)=NS0(z1b,r,tnb)+NS0(z1b,r,tnb), NS1(z1b,r,t)= 

NS1(z1b,r,tnb)+NS1(z1b,r,tnb) and NS2(z1b,r,t)=NS2(z1b,r,tnb)+NS2(z1b,r,tnb) with t=tnf=t(n+1)b (1n 

5000). Here 
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in which the arguments (z1b,r,tnb) of I, Ns and Ns are omitted. Note that after the above integrations 

NS0(z1b,r,t1b)= 4.21017 cm3 or 1.21017 cm3, NS1(z1b,r,t1b)=0 and NS2(z1b,r,t1b)=0 remain unchanged. 

Next, by substituting the concentrations NS0(z,r,t) and NS1(z,r,t), with t=tnb (1n5000), for NS0(z,r,t) 

and NS1(z,r,t) on the right hand side of eqn (5) and then integrating this equation over z from z1b to 

z1f, we obtain I(z1f,r,t)=I(z2b,r,t)=I(z1b,r,t)+I(z1b,r,t) with t=tnb (1n5000). Here 

  2

S0 S0 S1 S1 S0I N N I N I z             , (S.4) 

in which the arguments (z1b,r,tnb) of I, Ns and I are omitted. During this integration, we consider that 

Ns(z,r,tnb) equals Ns(z1b,r,tnb) and does change with z. 

Secondly, we consider the 19 ps pulse advances to the second layer of the sample ranging between 

z2b=0.1 mm and z2f=0.2 mm. By substituting I(z2b,r,t), with t=tnb (1n5000), for I(z,r,t) on the 

right hand sides of eqn (6)-(8) and then integrating these three equations over t from tnb to tnf, we 
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obtain NS0(z2b,r,t)=NS0(z2b,r,tnb)+NS0(z2b,r,tnb), NS1(z2b,r,t)=NS1(z2b,r,tnb)+NS1(z2b,r,tnb), and 

NS2(z2b,r,t)=NS2(z2b,r,tnb)+NS2(z2b,r,tnb), with t=tnf=t(n+1)b (1n5000). Here NS0(z2b,r,tnb), 

NS1(z2b,r,tnb) and NS2(z2b,r,tnb) can be derived from eqn (S.1)-(S.3) with (z2b,r,tnb) being the 

arguments of I, Ns and Ns. Note that after the above integrations NS0(z2b,r,t1b)=4.21017 cm3 or 

1.21017 cm3, NS1(z2b,r,t1b)=0 and NS2(z2b,r,t1b)=0 remain unchanged. Next, by substituting the 

concentrations NS0(z,r,t) and NS1(z,r,t), with t=tnb (1n5000), for NS0(z,r,t) and NS1(z,r,t) on the 

right hand side of eqn (5) and then integrating this equation over z from z2b to z2f, we obtain 

I(z2f,r,t)=I(z3b,r,t)=I(z2b,r,t)+I(z2b,r,t) with t=tnb (1n5000). Here I(z2b,r,tnb) can be derived from 

eqn (S.4) with (z2b,r,tnb) being the arguments of I, Ns and I. During this integration, we consider 

that Ns(z,r,tnb) equals Ns(z2b,r,tnb) and does change with z. 

Finally, by repeating the same procedures, we advance the 19 ps pulse, in increments of 0.1 mm, to 

the last layer of the sample ranging between z10b=0.9 mm and z10f=1.0 mm. In each layer of the sample, 

we derive I(z,r,t) as well as NS0(z,r,t), NS1(z,r,t) and NS2(z,r,t) with z=z1b and z10f (1m10) as well 

as t=t1b and tnf (1n5000). In summary, all Ns(z,r,t) at t=tnf can be related to those at t=tnb (1n5000) 
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and 
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For simplicity, we have dropped the arguments z and r of NS0(z,r,t), NS1(z,r,t) and NS2(z,r,t) in eqn 

(S.5)-(S.7). 

When deriving NS0(z,r,t), NS1(z,r,t) and NS2(z,r,t) by integrating eqn (S.5)-(S.7), we additionally 

track the excitation and relaxation behaviors of individual ClAlPc molecules by counting the number 

of one-photon S0)S1, two-photon S0)S2 and one-photon 0)S1)S2 excitation processes that 

individual ClAlPc molecules on 0)S1 and 0)S2 have experienced up to any time t3. Accordingly, 



5 
 

we decompose NS1(z,r,t) and NS2(z,r,t) into their components NES1(i;z,r,t) and NES2(i;z,r,t) which 

designate the concentrations of ClAlPc molecules on 0)S1 and 0)S2 that have absorbed i photons (i1) 

up to t3. NES1(i;z,r,t)+NES2(i;z,r,t), denoted by NE(i;z,r,t) henceforth, designates the concentrations 

of ClAlPc molecules on S0, 0)S1 or 0)S2 (all the ClAlPc molecules indeed) that have individually 

absorbed i photons with energy of iћ (i1) up to t3. Because ClAlPc molecules relaxing to S0 from 

0)S1, with a fluorescent lifetime f (12.1 ns) greatly longer than  (19 ps), are neglected during the 

pulse-matter interaction, NS0(z,r,t) does not actually contribute to NE(i;z,r,t) for i1. For simplicity, 

we drop the arguments z, r or t, of I(z,r,t), NS0(z,r,t), NS1(z,r,t), NS2(z,r,t), NES1(i;z,r,t), NES2(i;z,r,t) 

and NE(i;z,r,t), fully or partially, in the following unless it is necessary to express them explicitly. 

Given NES1(i;t1b)=NS1(t1b)=0, NES2(i;t1b)=NS2(t1b)=0 and NS0(t1b)=4.21017 cm3 or 1.21017 cm3, 

0)S1 and 0)S2 are respectively populated, in the time range [t1b, t1f], by one-photon S0)S1 and two-

photon S0)S2 excitations of the solute molecules pertaining to NS0(t1b). Therefore, after the first 

temporal segment of a pulse, falling in the time range [t1b, t1f], traverses the sample, both NES1(i;t1f) and 

NES2(i;t1f) have a single nonzero component 

   ES1 1 S1 11; f fN t N t  (S.8) 

and 

   ES2 1 S2 12; f fN t N t . (S.9) 

Both NS1(t1f) and NS2(t1f) on the right hand side of eqn (S.8) and (S.9) are derived from eqn (S.5) 

and (S.6) with n set to be 1. 

After the second temporal segment, falling in the time range [t2b, t2f], of this pulse traverses the 

sample, the solute molecules on 0)S1 may have absorbed one or two photons according to eqn (S.5)-

(S.7) in combination with eqn (S.8) and (S.9). Hence NES1(i;t2f) has the following two nonzero 

components 
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and 
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When the first term on the right hand side of eqn (S.10), i.e., NES1(1;t2b=t1f) derived from eqn (S.8), 
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is the initial condition, the second and third terms denote the change of NES1(i=1) induced in this 

temporal segment by one-photon S0)S1 and 0)S1)S2 excitation of the solute molecules 

pertaining to NS0(t2b) and NES1(1;t2b). Eqn (S.11) shows the change of NES1(i=2) induced in this 

temporal segment by )S20)S2)S10)S1 relaxation of the solute molecules pertaining to 

NES2(2;t2b). Here, S2=900 fs (the )S20)S2)S10)S1 relaxation lifetime) is much longer than 

the temporal segment width of t=22.8 fs. The initial condition NES1(2;t2b)=0 is omitted herein. 

Analogously, NES2(i;t2f) has only one nonzero component 
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When the first term on the right hand side of eqn (S.12), NES2(2;t2b=t1f) derived from eqn (S.9), is the 

initial condition, the second through the fourth terms respectively denote the changes of NES2(i=2) 

induced in this temporal segment by two-photon S0)S2 excitation of the solute molecules 

pertaining to NS0(t2b), one-photon 0)S1)S2 excitation of the solute molecules pertaining to 

NES1(1;t2b) and )S20)S2)S10)S1 relaxation of the solute molecules pertaining to NES2(2;t2b). 

NS0(t2b) in the second terms of both eqn (S.10) and (S.12) is derived from eqn (S.5)-(S.7) with n set 

to be 1. 

After the third segment, falling in the time range [t3b, t3f], of this pulse traverses the sample, the 

solute molecules on 0)S1 may have absorbed one or two photons and those on 0)S2 may have absorbed 

two or three photons according to eqn (S.5)-(S.7) in combination with eqn (S.10)-(S.12). Hence 

NES1(i;t3f) and NES2(i;t3f) respectively contain two nonzero components 
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and 
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When the first terms on the right hand side of eqn (S.13)-(S.15) obtained from eqn (S.10)-(S.12) with 

t2f replaced by t3b, are the initial conditions, the subsequent terms denote the changes induced in this 

temporal segment by one-photon S0)S1 and 0)S1)S2 excitation of the solute molecules 

pertaining to NS0(t3b) and NES1(1;t3b) respectively (related to eqn (S.13)), one-photon 0)S1)S2 

excitation and )S2 0)S2)S10)S1 relaxation of the solute molecules pertaining to NES1(2;t3b) 

and NES2(2;t3b), respectively (related to eqn (S.14)) as well as two-photon S0)S2 excitation, one- 

photon 0)S1)S2 excitation and )S20)S2)S10)S1 relaxation of the solute molecules 

pertaining to NS0(t3b), NES1(1;t3b) and NES2(2;t3b), respectively (related to eqn (S.15)). The initial 

condition of eqn (S.16) NES2(3;t3b)=0 is omitted herein. The only term on the right hand side denotes 

the change of NES2(i=3) induced in this temporal segment by one-photon 0)S1)S2 excitation of the 

solute molecules pertaining to NES1(2;t3b). NS0(t3b) in the second terms of both eqn (S.13) and (S.15) 

is derived from eqn (S.5)-(S.7) with n set to be 2. 

When n exceeds 3 and is even, we analogize the above processes to obtain 
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with 2in/2. On the other hand, when n exceeds 3 and is odd, we simply omit eqn (S.17) and retain 

eqn (S.18) and (S.19) for 2i(n+1)/2. No matter n is even or odd, for the case of i=1, we have 
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         

ES2 ES2

2

S0 S1 ES1 ES2

S2

2; 2;

1; 2;

2

nf nb

nb nb nb nb nb

N t N t

N t I t N t I t N t
t

 

  



 
    
 

. (S.21) 

At the desired z, z and r, we sequentially integrate eqn (S.5)-(S.21) to derive NES1(i;z,r,3) with i 
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ranging between 1 and 2501 and NES2(i;z,r,3) with i ranging between 2 and 2501. Accordingly, we 

derive NE(i;z,r,3) as a function of i at three incident pulse energy levels (1.1, 4.5, and 8.7 μJ), two 

concentrations, 4.21017 cm3 and 1.21017 cm3 and three penetration depths (0.1, 0.5 and 1.0 mm). 

The results are shown in Fig. 4 of the Main Text. 


