Supporting Information for:

Mechanism of short-pulse-induced solute migration in comparison to continuous-light-driven thermal diffusion

Li-Shu Lee, ${ }^{\text {a }}$ Yu-Ting Kuo, ${ }^{\text {a }}$ Chi-Chen Wang, ${ }^{\text {a }}$ Yi-Ci Li, ${ }^{\text {a }}$ Po-Yuan Huang, ${ }^{\text {a }}$ Cheng-I Lee ${ }^{\text {b, },{ }^{\dagger} \text { and }}$ Tai-Huei Weia, ${ }^{\text {a }}$
${ }^{a}$ Department of Physics, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan
${ }^{b}$ Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan
${ }^{\dagger}$ Authors to whom correspondence should be addressed;
E-mails: biocil@ccu.edu.tw (C.I.L.); twei@ccu.edu.tw (T.H.W.).
Tel.: +886-5-272-0411 (ext 66511) (C.I.L.); Fax: +886-5-2722871 (C.I.L.);
Tel.: +886-5-272-0411 (ext 66324) (T.H.W.); Fax: +886-5-2720587 (T.H.W.).

The aim of this Supporting Information (SI) is to calculate the pulse energy absorbed by individual ClAlPc molecules $\left(\Delta \varepsilon_{p}\right)$ dissolved in ethanol (EtOH) at two concentrations, $4.2 \times 10^{17} \mathrm{~cm}^{-3}$ and $1.2 \times 10^{17} \mathrm{~cm}^{-3}$. Given that the Beer's law equation (eqn (5)) and the associated population-changerate equations (eqn (6)-(8)) govern the time rate of pulse energy absorption by ClAlPc molecules in a unit of volume, collectively, we numerically derive $\Delta \varepsilon_{p}$ by tracking the excitation and relaxation behaviors of individual CIAIPc molecules (in addition to alternately integrating eqn (5) and eqn (6)(8) to evaluate the intensity $I\left(z^{\prime}, r, t\right)$ and population densities of the S_{0}, S_{1} and S_{2} states, denoted by $N_{\mathrm{S} 0}\left(z^{\prime}, r, t\right), N_{\mathrm{S} 1}\left(z^{\prime}, r, t\right)$ and $N_{\mathrm{S} 2}\left(z^{\prime}, r, t\right)$, respectively). Here, z^{\prime} denotes the penetration depth of a pulse into the sample and falls in the range [$0, L=1 \mathrm{~mm}$] with L being the sample thickness, r the lateral distance relative to the laser beam axis and t the time relative to the pulse peak. In the following, we first show how we evaluate $I\left(z^{\prime}, r, t\right)$ and $N^{\prime} \mathrm{s}\left(z^{\prime}, r, t\right)$ specified by the subscripts by alternately integrating eqn (5) and eqn (6)-(8). Afterward, we explain how we derive $\Delta \varepsilon_{p}$ by counting the numbers of one-photon $\left.\mathrm{S}_{0} \rightarrow \mid v\right) \mathrm{S}_{1}$, two-photon $\left.\mathrm{S}_{0} \rightarrow \mid v\right) \mathrm{S}_{2}$ and one-photon $\left.\mid 0\right) \mathrm{S}_{1} \rightarrow|v\rangle \mathrm{S}_{2}$ excitation processes that individual CIAIPc molecules experience in the course of pulse-matter interaction.

As mentioned in the Main Text, The intensity of each laser pulse incident on the sample's front surface at a certain position z relative the beam waist is denoted by $I\left(z^{\prime}=0, r, t\right)=I_{z}(r, t)$ given by eqn (1). When each pulse has a width of $\tau=19 \mathrm{ps}\left(H W e^{-1} \mathrm{M}\right)$, we ignore the pulse for the time beyond $\pm 3 \tau(\pm 57$ ps) when simulating the pulse-matter interaction. This is because the intensity outside the time range $[-3 \tau, 3 \tau]$ is vanishingly small. When the pulse-matter interaction starts at $t=-3 \tau, \mathrm{ClAlPc} / \mathrm{EtOH}$ is in full thermodynamic (thermal, mechanical and chemical) equilibrium with $N_{\mathrm{S} 1}\left(z^{\prime}, r,-3 \tau\right)=N_{\mathrm{s} 2}\left(z^{\prime}, r,-3 \tau\right)$ $=0$ and $N_{\mathrm{s} 0}\left(z^{\prime}, r,-3 \tau\right)=4.2 \times 10^{17} \mathrm{~cm}^{-3}$ or $1.2 \times 10^{17} \mathrm{~cm}^{-3}$ throughout the whole solution.

In our numerical integration of $I\left(z^{\prime}, r, t\right)$ and $N^{\prime} \mathrm{s}\left(z^{\prime}, r, t\right)$ and derivation of $\Delta \varepsilon_{p}$, we slice the sample into 10 layers and divide each pulse into 5000 temporal segments. Therefore, each layer of the sample has a thickness of $\Delta z^{\prime}=0.1 \mathrm{~mm}$ and each temporal segment of a pulse has a width of $\Delta t=6 \tau / 5000=22.8 \mathrm{fs}$. Labeling each layer of the sample by an integer m ranging between 1 and 10 , we denote the depths for the leading and closing edges of the $m^{\text {th }}$ layer by $z^{\prime}{ }_{m b}=(m-1) \Delta z^{\prime}$ and $z^{\prime}{ }_{m f}=z^{\prime}(m+1) b=m \Delta z^{\prime}$, respectively. Labeling each temporal segment of a pulse by an integer n ranging between 1 and 5000, we denote the times for the leading and the closing edges of the $n^{\text {th }}$ temporal segment by $t_{n b}=-3 \tau+(n-1) \Delta t$ and
$t_{n f}=t_{(n+1) b}=-3 \tau+n \Delta t$, respectively.
First of all, we deal with the interaction of a 19 ps pulse with the entrance layer $(m=1)$ of the sample ranging between $z^{\prime}{ }_{1 b}=0$ and $z^{\prime}{ }_{1 f}=0.1 \mathrm{~mm}$. By substituting the incident intensity $I\left(z^{\prime}{ }_{1 b}, r, t^{\prime}\right)=I_{z}\left(r, t^{\prime}\right)$, with $t^{\prime}=t_{n b}(1 \leq n \leq 5000)$, for $I\left(z^{\prime}, r, t^{\prime}\right)$ on the right hand sides of eqn (6)-(8) and then integrating these three equations over t^{\prime} from $t_{n b}$ to $t_{n f}$, we obtain $N_{\mathrm{s} 0}\left(z^{\prime}{ }_{1 b}, r, t\right)=N_{\mathrm{s} 0}\left(z^{\prime}{ }_{1 b}, r, t_{n b}\right)+\Delta N_{\mathrm{s} 0}\left(z^{\prime}{ }_{1 b}, r, t_{n b}\right), N_{\mathrm{s} 1}\left(z^{\prime}{ }_{1 b}, r, t\right)=$ $N_{\mathrm{S} 1}\left(z^{\prime}{ }_{1 b}, r, t_{n b}\right)+\Delta N_{\mathrm{S} 1}\left(z^{\prime}{ }_{1 b}, r, t_{n b}\right)$ and $N_{\mathrm{S} 2}\left(z^{\prime}{ }_{1 b}, r, t\right)=N_{\mathrm{S} 2}\left(z^{\prime}{ }_{1 b}, r, t_{n b}\right)+\Delta N_{\mathrm{S} 2}\left(z^{\prime}{ }_{1 b}, r, t_{n b}\right)$ with $t=t_{n f}=t_{(n+1) b}(1 \leq n \leq$ 5000). Here

$$
\begin{align*}
& \Delta N_{\mathrm{S} 0}=\left(-\frac{\sigma_{\mathrm{S} 0} N_{\mathrm{S} 0} I}{\hbar \omega}-\frac{\beta N_{\mathrm{S} 0} I^{2}}{2 \hbar \omega}\right) \times \Delta t, \tag{S.1}\\
& \Delta N_{\mathrm{S} 1}=\left(\frac{\sigma_{\mathrm{S} 0} N_{\mathrm{S} 0} I}{\hbar \omega}-\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{S} 1} I}{\hbar \omega}+\frac{N_{\mathrm{S} 2}}{\tau_{\mathrm{S} 2}}\right) \times \Delta t \tag{S.2}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta N_{\mathrm{S} 2}=\left(\frac{\beta N_{\mathrm{S} 0} I^{2}}{2 \hbar \omega}+\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{S} 1} I}{\hbar \omega}-\frac{N_{\mathrm{S} 2}}{\tau_{\mathrm{S} 2}}\right) \times \Delta t, \tag{S.3}
\end{equation*}
$$

in which the arguments $\left(z^{\prime} 1 b, r, t_{n b}\right)$ of $I, N^{\prime} s$ and ΔN^{\prime} s are omitted. Note that after the above integrations $N_{\mathrm{SO}}\left(z^{\prime}{ }_{1 b}, r, t_{1 b}\right)=4.2 \times 10^{17} \mathrm{~cm}^{-3}$ or $1.2 \times 10^{17} \mathrm{~cm}^{-3}, N_{\mathrm{S} 1}\left(z^{\prime}{ }_{1 b}, r, t_{1 b}\right)=0$ and $N_{\mathrm{S} 2}\left(z^{\prime}{ }_{1 b}, r, t_{1 b}\right)=0$ remain unchanged. Next, by substituting the concentrations $N_{\mathrm{so}}\left(z^{\prime \prime}, r, t\right)$ and $N_{\mathrm{s} 1}\left(z^{\prime \prime}, r, t\right)$, with $t=t_{n b}(1 \leq n \leq 5000)$, for $N_{\mathrm{so}}\left(z^{\prime \prime}, r, t\right)$ and $N_{\mathrm{S} 1}\left(z^{\prime \prime}, r, t\right)$ on the right hand side of eqn (5) and then integrating this equation over $z^{\prime \prime}$ from $z^{\prime}{ }_{1 b}$ to $z^{\prime}{ }_{1}$, we obtain $I\left(z^{\prime}{ }_{1 f}, r, t\right)=I\left(z^{\prime}{ }_{2 b}, r, t\right)=I\left(z^{\prime}{ }_{1 b}, r, t\right)+\Delta I\left(z^{\prime}{ }_{1 b}, r, t\right)$ with $t=t_{n b}(1 \leq n \leq 5000)$. Here

$$
\begin{equation*}
\Delta I=\left[-\left(\sigma_{\mathrm{s} 0} N_{\mathrm{s} 0}+\sigma_{\mathrm{S} 1} N_{\mathrm{S} 1}\right) \times I-\beta N_{\mathrm{s} 0} \times I^{2}\right] \times \Delta z^{\prime}, \tag{S.4}
\end{equation*}
$$

in which the arguments $\left(z^{\prime}{ }_{1} b, r, t_{n b}\right)$ of I, N^{\prime} s and ΔI are omitted. During this integration, we consider that $N^{\prime} \mathrm{s}\left(z^{\prime \prime}, r, t_{n b}\right)$ equals $N^{\prime} \mathrm{s}\left(z^{\prime} 1 b, r, t_{n b}\right)$ and does change with $z^{\prime \prime}$.

Secondly, we consider the 19 ps pulse advances to the second layer of the sample ranging between $z^{\prime} 2 b=0.1 \mathrm{~mm}$ and $z^{\prime}{ }_{2} 2=0.2 \mathrm{~mm}$. By substituting $I\left(z^{\prime}{ }_{2 b}, r, t^{\prime}\right)$, with $t^{\prime}=t_{n b}(1 \leq n \leq 5000)$, for $I\left(z^{\prime}, r, t^{\prime}\right)$ on the right hand sides of eqn (6)-(8) and then integrating these three equations over t^{\prime} from $t_{n b}$ to $t_{n f}$, we
obtain $\quad N_{\mathrm{S} 0}\left(z^{\prime}{ }_{2 b}, r, t\right)=N_{\mathrm{S} 0}\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right)+\Delta N_{\mathrm{S} 0}\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right), \quad N_{\mathrm{S} 1}\left(z^{\prime}{ }_{2 b}, r, t\right)=N_{\mathrm{S} 1}\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right)+\Delta N_{\mathrm{S} 1}\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right), \quad$ and $N_{\mathrm{S} 2}\left(z^{\prime}{ }_{2 b}, r, t\right)=N_{\mathrm{S} 2}\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right)+\Delta N_{\mathrm{S} 2}\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right)$, with $\quad t=t_{n f}=t_{(n+1) b} \quad(1 \leq n \leq 5000)$. Here $\Delta N_{\mathrm{S} 0}\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right)$, $\Delta N_{\mathrm{S} 1}\left(z^{\prime} 2 b, r, t_{n b}\right)$ and $\Delta N_{\mathrm{s} 2}\left(z^{\prime} 2 b, r, t_{n b}\right)$ can be derived from eqn (S.1)-(S.3) with ($\left.z^{\prime} 2 b, r, t_{n b}\right)$ being the arguments of $I, N^{\prime} \mathrm{s}$ and $\Delta N^{\prime} \mathrm{s}$. Note that after the above integrations $N_{\mathrm{s} 0}\left(z^{\prime} 2 b, r, t_{1 b}\right)=4.2 \times 10^{17} \mathrm{~cm}^{-3}$ or $1.2 \times 10^{17} \mathrm{~cm}^{-3}, N_{\mathrm{S} 1}\left(z_{2 b}^{\prime}, r, t_{1 b}\right)=0$ and $N_{\mathrm{S} 2}\left(z_{2}^{\prime}{ }_{2 b}, r, t_{1 b}\right)=0$ remain unchanged. Next, by substituting the concentrations $N_{\mathrm{S} 0}\left(z^{\prime \prime}, r, t\right)$ and $N_{\mathrm{S} 1}\left(z^{\prime \prime}, r, t\right)$, with $t=t_{n b}(1 \leq n \leq 5000)$, for $N_{\mathrm{S} 0}\left(z^{\prime \prime}, r, t\right)$ and $N_{\mathrm{S} 1}\left(z^{\prime \prime}, r, t\right)$ on the right hand side of eqn (5) and then integrating this equation over $z^{\prime \prime}$ from $z^{\prime} 2 b$ to $z^{\prime} 2 f$, we obtain $I\left(z^{\prime}{ }_{2 f}, r, t\right)=I\left(z^{\prime}{ }_{3}, r, t\right)=I\left(z^{\prime}{ }_{2 b}, r, t\right)+\Delta I\left(z^{\prime} 2 b, r, t\right)$ with $t=t_{n b}(1 \leq n \leq 5000)$. Here $\Delta I\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right)$ can be derived from eqn (S.4) with ($z^{\prime}{ }_{2 b}, r, t_{n b}$) being the arguments of $I, N^{\prime} \mathrm{s}$ and ΔI. During this integration, we consider that $N^{\prime} \mathrm{s}\left(z^{\prime \prime}, r, t_{n b}\right)$ equals $N^{\prime} \mathrm{s}\left(z^{\prime}{ }_{2 b}, r, t_{n b}\right)$ and does change with $z^{\prime \prime}$.

Finally, by repeating the same procedures, we advance the 19 ps pulse, in increments of 0.1 mm , to the last layer of the sample ranging between $z^{\prime} 10 b=0.9 \mathrm{~mm}$ and $z^{\prime} 10 f=1.0 \mathrm{~mm}$. In each layer of the sample, we derive $I\left(z^{\prime}, r, t\right)$ as well as $N_{\mathrm{S} 0}\left(z^{\prime}, r, t\right), N_{\mathrm{S} 1}\left(z^{\prime}, r, t\right)$ and $N_{\mathrm{S} 2}\left(z^{\prime}, r, t\right)$ with $z^{\prime}=z^{\prime}{ }_{1 b}$ and $z^{\prime}{ }_{10 f}(1 \leq m \leq 10)$ as well as $t=t_{1 b}$ and $t_{n f}(1 \leq n \leq 5000)$. In summary, all $N^{\prime} \mathrm{s}\left(z^{\prime}, r, t\right)$ at $t=t_{n f}$ can be related to those at $t=t_{n b}(1 \leq n \leq 5000)$

$$
\begin{align*}
& N_{\mathrm{S} 1}\left(t_{n f}\right)=N_{\mathrm{S} 1}\left(t_{n b}\right)+\left[\frac{\sigma_{\mathrm{S} 0} N_{\mathrm{S} 0}\left(t_{n b}\right) I\left(t_{n b}\right)}{\hbar \omega}-\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{S} 1}\left(t_{n b}\right) I\left(t_{n b}\right)}{\hbar \omega}+\frac{N_{\mathrm{S} 2}\left(t_{n b}\right)}{\tau_{\mathrm{S} 2}}\right] \times \Delta t, \tag{S.5}\\
& N_{\mathrm{S} 2}\left(t_{n f}\right)=N_{\mathrm{S} 2}\left(t_{n b}\right)+\left[\frac{\beta N_{\mathrm{S} 0}\left(t_{n b}\right) I^{2}\left(t_{n b}\right)}{2 \hbar \omega}+\frac{\sigma_{\mathrm{S} 1}\left(t_{n b}\right) I\left(t_{n b}\right)}{\hbar \omega}-\frac{N_{\mathrm{S} 2}\left(t_{n b}\right)}{\tau_{\mathrm{S} 2}}\right] \times \Delta t \tag{S.6}
\end{align*}
$$

and

$$
\begin{equation*}
N_{\mathrm{S} 0}\left(t_{n f}\right)=N_{\mathrm{S} 0}(-3 \tau)-N_{\mathrm{S} 1}\left(t_{n f}\right)-N_{\mathrm{S} 2}\left(t_{n f}\right) . \tag{S.7}
\end{equation*}
$$

For simplicity, we have dropped the arguments z^{\prime} and r of $N_{\mathrm{s} 0}\left(z^{\prime}, r, t\right), N_{\mathrm{s} 1}\left(z^{\prime}, r, t\right)$ and $N_{\mathrm{s} 2}\left(z^{\prime}, r, t\right)$ in eqn (S.5)-(S.7).

When deriving $N_{\mathrm{S} 0}\left(z^{\prime}, r, t\right), N_{\mathrm{S} 1}\left(z^{\prime}, r, t\right)$ and $N_{\mathrm{S} 2}\left(z^{\prime}, r, t\right)$ by integrating eqn (S.5)-(S.7), we additionally track the excitation and relaxation behaviors of individual ClAlPc molecules by counting the number of one-photon $\left.\mathrm{S}_{0} \rightarrow \mid v\right) \mathrm{S}_{1}$, two-photon $\left.\mathrm{S}_{0} \rightarrow \mid v\right) \mathrm{S}_{2}$ and one-photon $\left.\left.\mid 0\right) \mathrm{S}_{1} \rightarrow \mid v\right) \mathrm{S}_{2}$ excitation processes that individual ClAlPc molecules on $\mid 0) \mathrm{S}_{1}$ and $\left.\mid 0\right) \mathrm{S}_{2}$ have experienced up to any time $t \leq 3 \tau$. Accordingly,
we decompose $N_{\mathrm{S} 1}\left(z^{\prime}, r, t\right)$ and $N_{\mathrm{S} 2}\left(z^{\prime}, r, t\right)$ into their components $N_{\mathrm{ES} 1}\left(i ; z^{\prime}, r, t\right)$ and $N_{\mathrm{ES} 2}\left(i ; z^{\prime}, r, t\right)$ which designate the concentrations of ClAlPc molecules on $\mid 0) \mathrm{S}_{1}$ and $\left.\mid 0\right) \mathrm{S}_{2}$ that have absorbed i photons ($i \geq 1$) up to $t \leq 3 \tau$. $N_{\mathrm{ES} 1}\left(i ; z^{\prime}, r, t\right)+N_{\mathrm{ES} 2}\left(i ; z^{\prime}, r, t\right)$, denoted by $N_{\mathrm{E}}\left(i ; z^{\prime}, r, t\right)$ henceforth, designates the concentrations of ClAIPc molecules on $\left.S_{0}, \mid 0\right) S_{1}$ or $\left.\mid 0\right) S_{2}$ (all the ClAIPc molecules indeed) that have individually absorbed i photons with energy of $i \hbar \omega(i \geq 1)$ up to $t \leq 3 \tau$. Because ClAlPc molecules relaxing to S_{0} from $\mid 0) \mathrm{S}_{1}$, with a fluorescent lifetime $\tau_{f}(12.1 \mathrm{~ns})$ greatly longer than $\tau(19 \mathrm{ps})$, are neglected during the pulse-matter interaction, $N_{\mathrm{So}}\left(z^{\prime}, r, t\right)$ does not actually contribute to $N_{\mathrm{E}}\left(i ; z^{\prime}, r, t\right)$ for $i \geq 1$. For simplicity, we drop the arguments z^{\prime}, r or t, of $I\left(z^{\prime}, r, t\right), N_{\mathrm{s} 0}\left(z^{\prime}, r, t\right), N_{\mathrm{S} 1}\left(z^{\prime}, r, t\right), N_{\mathrm{S} 2}\left(z^{\prime}, r, t\right), N_{\mathrm{ES} 1}\left(i ; z^{\prime}, r, t\right), N_{\mathrm{ES} 2}\left(i ; z^{\prime}, r, t\right)$ and $N_{\mathrm{E}}\left(i ; z^{\prime}, r, t\right)$, fully or partially, in the following unless it is necessary to express them explicitly.

Given $N_{\mathrm{ES} 1}\left(i ; t_{1 b}\right)=N_{\mathrm{S} 1}\left(t_{1 b}\right)=0, N_{\mathrm{ES} 2}\left(i ; t_{1 b}\right)=N_{\mathrm{S} 2}\left(t_{1 b}\right)=0$ and $N_{\mathrm{S} 0}\left(t_{1 b}\right)=4.2 \times 10^{17} \mathrm{~cm}^{-3}$ or $1.2 \times 10^{17} \mathrm{~cm}^{-3}$, $\mid 0) S_{1}$ and $\left.\mid 0\right) S_{2}$ are respectively populated, in the time range $\left[t_{1 b}, t_{1 f}\right]$, by one-photon $S_{0} \rightarrow|v\rangle \mathrm{S}_{1}$ and twophoton $\left.\mathrm{S}_{0} \rightarrow \mid \nu\right) \mathrm{S}_{2}$ excitations of the solute molecules pertaining to $N_{\mathrm{so}}\left(t_{1 b}\right)$. Therefore, after the first temporal segment of a pulse, falling in the time range $\left[t_{1 b}, t_{1 f}\right]$, traverses the sample, both $N_{\mathrm{ES} 1}\left(i ; t_{1 f}\right)$ and $N_{\mathrm{ES} 2}\left(i ; t_{1 f}\right)$ have a single nonzero component

$$
\begin{equation*}
N_{\mathrm{ES} 1}\left(1 ; t_{1 f}\right)=N_{\mathrm{S} 1}\left(t_{1 f}\right) \tag{S.8}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\mathrm{ES} 2}\left(2 ; t_{1 f}\right)=N_{\mathrm{S} 2}\left(t_{1 f}\right) . \tag{S.9}
\end{equation*}
$$

Both $N_{\mathrm{S} 1}\left(t_{1 f}\right)$ and $N_{\mathrm{S} 2}\left(t_{1 f}\right)$ on the right hand side of eqn (S.8) and (S.9) are derived from eqn (S.5) and (S.6) with n set to be 1 .

After the second temporal segment, falling in the time range $\left[t_{2 b}, t_{2 f}\right]$, of this pulse traverses the sample, the solute molecules on $\mid 0) \mathrm{S}_{1}$ may have absorbed one or two photons according to eqn (S.5)(S.7) in combination with eqn (S.8) and (S.9). Hence $N_{\mathrm{ES} 1}\left(i ; t_{2} f\right.$) has the following two nonzero components

$$
\begin{equation*}
N_{\mathrm{ES} 1}\left(1 ; t_{2 f}\right)=N_{\mathrm{ES} 1}\left(1 ; t_{2 b}\right)+\left[\frac{\sigma_{\mathrm{S} 0} N_{\mathrm{S} 0}\left(t_{2 b}\right) I\left(t_{2 b}\right)}{\hbar \omega}-\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(1 ; t_{2 b}\right) I\left(t_{2 b}\right)}{\hbar \omega}\right] \times \Delta t \tag{S.10}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\mathrm{ES} 1}\left(2 ; t_{2 f}\right)=\frac{N_{\mathrm{ES} 2}\left(2 ; t_{2 b}\right)}{\tau_{\mathrm{S} 2}} \times \Delta t \tag{S.11}
\end{equation*}
$$

When the first term on the right hand side of eqn (S.10), i.e., $N_{\mathrm{ES} 1}\left(1 ; t_{2 b}=t_{1 f}\right)$ derived from eqn (S.8),
is the initial condition, the second and third terms denote the change of $N_{\mathrm{ESI}}(i=1)$ induced in this temporal segment by one-photon $\left.S_{0} \rightarrow \mid v\right) S_{1}$ and $\left.\mid 0\right) S_{1} \rightarrow|v\rangle S_{2}$ excitation of the solute molecules pertaining to $N_{\mathrm{s} 0}\left(t_{2 b}\right)$ and $N_{\mathrm{ESI}}\left(1 ; t_{2 b}\right)$. Eqn (S.11) shows the change of $N_{\mathrm{ESI}}(i=2)$ induced in this temporal segment by $\left.\left.\left.\mid v) S_{2} \rightsquigarrow \mid 0\right) S_{2} \rightsquigarrow \mid v\right) S_{1} \rightsquigarrow \mid 0\right) S_{1}$ relaxation of the solute molecules pertaining to $N_{\mathrm{ES} 2}\left(2 ; t_{2 b}\right)$. Here, $\tau_{\mathrm{S} 2}=900$ fs (the $\left.\left.\left.\left.\mid v\right) \mathrm{S}_{2} \rightsquigarrow \mid 0\right) \mathrm{S}_{2} \rightsquigarrow \mid v\right) \mathrm{S}_{1} \rightsquigarrow \mid 0\right) \mathrm{S}_{1}$ relaxation lifetime) is much longer than the temporal segment width of $\Delta t=22.8$ fs. The initial condition $N_{\text {ES }}\left(2 ; t_{2 b}\right)=0$ is omitted herein. Analogously, $N_{\mathrm{ES} 2}\left(i ; t_{2 f}\right)$ has only one nonzero component

$$
\begin{align*}
N_{\mathrm{ES} 2}\left(2 ; t_{2 f}\right) & =N_{\mathrm{ES} 2}\left(2 ; t_{2 b}\right) \\
& +\left[\frac{\beta N_{\mathrm{S} 0}\left(t_{2 b}\right) I^{2}\left(t_{2 b}\right)}{2 \hbar \omega}+\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(1 ; t_{2 b}\right) I\left(t_{2 b}\right)}{\hbar \omega}-\frac{N_{\mathrm{ES} 2}\left(2 ; t_{2 b}\right)}{\tau_{\mathrm{S} 2}}\right] \times \Delta t . \tag{S.12}
\end{align*}
$$

When the first term on the right hand side of eqn (S.12), $N_{\mathrm{ES} 2}\left(2 ; t_{2 b}=t_{1 f}\right)$ derived from eqn (S.9), is the initial condition, the second through the fourth terms respectively denote the changes of $N_{\mathrm{ES} 2}(i=2)$ induced in this temporal segment by two-photon $\left.S_{0} \rightarrow \mid v\right) S_{2}$ excitation of the solute molecules pertaining to $N_{\mathrm{s} 0}\left(t_{2 b}\right)$, one-photon $\left.\left.\mid 0\right) \mathrm{S}_{1} \rightarrow \mid \nu\right) \mathrm{S}_{2}$ excitation of the solute molecules pertaining to $N_{\mathrm{ES} 1}\left(1 ; t_{2 b}\right)$ and $\left.\left.\left.\left.\mid v\right) \mathrm{S}_{2} \rightsquigarrow \mid 0\right) \mathrm{S}_{2} \rightsquigarrow \mid v\right) \mathrm{S}_{1} \rightsquigarrow \mid 0\right) \mathrm{S}_{1}$ relaxation of the solute molecules pertaining to $N_{\mathrm{ES} 2}\left(2 ; t_{2 b}\right)$. $N_{\mathrm{so}}\left(t_{2 b}\right)$ in the second terms of both eqn (S.10) and (S.12) is derived from eqn (S.5)-(S.7) with n set to be 1 .

After the third segment, falling in the time range $\left[t_{3 b}, t_{3 f}\right]$, of this pulse traverses the sample, the solute molecules on $\mid 0) S_{1}$ may have absorbed one or two photons and those on $\left.\mid 0\right) S_{2}$ may have absorbed two or three photons according to eqn (S.5)-(S.7) in combination with eqn (S.10)-(S.12). Hence $N_{\mathrm{ES} 1}\left(i ; t_{3 f}\right)$ and $N_{\mathrm{ES} 2}\left(i ; t_{3 f}\right)$ respectively contain two nonzero components

$$
\begin{align*}
N_{\mathrm{ES} 1}\left(1 ; t_{3 f}\right)= & N_{\mathrm{ES} 1}\left(1 ; t_{3 b}\right)+\left[\frac{\sigma_{\mathrm{S} 0} N_{\mathrm{S} 0}\left(t_{3 b}\right) I\left(t_{3 b}\right)}{h \omega}-\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(1 ; t_{3 b}\right) I\left(t_{3 b}\right)}{h \omega}\right] \times \Delta t, \tag{S.13}\\
N_{\mathrm{ES} 1}\left(2 ; t_{3 f}\right) & =N_{\mathrm{ES} 1}\left(2 ; t_{3 b}\right)-\left[\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(2 ; t_{3 b}\right) I\left(t_{3 b}\right)}{\hbar \omega}-\frac{N_{\mathrm{ES} 2}\left(2 ; t_{3 b}\right)}{\tau_{\mathrm{S} 2}}\right] \times \Delta t, \tag{S.14}\\
N_{\mathrm{ES} 2}\left(2 ; t_{3 f}\right) & =N_{\mathrm{ES} 2}\left(2 ; t_{3 b}\right) \\
& +\left[\frac{\beta N_{\mathrm{S} 0}\left(t_{3 b}\right) I^{2}\left(t_{3 b}\right)}{2 \hbar \omega}+\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(1 ; t_{3 b}\right) I\left(t_{3 b}\right)}{\hbar \omega}-\frac{N_{\mathrm{ES} 2}\left(2 ; t_{3 b}\right)}{\tau_{\mathrm{S} 2}}\right] \times \Delta t \tag{S.15}
\end{align*}
$$

and

$$
\begin{equation*}
N_{\mathrm{ES} 2}\left(3 ; t_{3 f}\right)=\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(2 ; t_{3 b}\right) I\left(t_{3 b}\right)}{\hbar \omega} \times \Delta t \tag{S.16}
\end{equation*}
$$

When the first terms on the right hand side of eqn (S.13)-(S.15) obtained from eqn (S.10)-(S.12) with $t_{2 f}$ replaced by $t_{3 b}$, are the initial conditions, the subsequent terms denote the changes induced in this temporal segment by one-photon $\left.S_{0} \rightarrow \mid v\right) S_{1}$ and $\left.\left.\mid 0\right) S_{1} \rightarrow \mid v\right) S_{2}$ excitation of the solute molecules pertaining to $N_{\mathrm{So}}\left(t_{3 b}\right)$ and $N_{\mathrm{ES} 1}\left(1 ; t_{3 b}\right)$ respectively (related to eqn (S.13)), one-photon $\left.\left.\mid 0\right) \mathrm{S}_{1} \rightarrow \mid v\right) \mathrm{S}_{2}$ excitation and $\left.\left.\left.\mid v) S_{2} \rightsquigarrow \mid 0\right) S_{2} \rightsquigarrow \mid v\right) S_{1} \rightsquigarrow \mid 0\right) S_{1}$ relaxation of the solute molecules pertaining to $N_{\mathrm{ES} 1}\left(2 ; t_{3 b}\right)$ and $N_{\mathrm{ES} 2}\left(2 ; t_{3 b}\right)$, respectively (related to eqn (S.14)) as well as two-photon $\left.\mathrm{S}_{0} \rightarrow \mid v\right) \mathrm{S}_{2}$ excitation, onephoton $\left.\mid 0) S_{1} \rightarrow \mid v\right) S_{2}$ excitation and $\left.\left.\left.\left.\mid v\right) S_{2 \rightsquigarrow} \rightsquigarrow \mid 0\right) S_{2} \rightsquigarrow \mid v\right) S_{1} \rightsquigarrow \mid 0\right) S_{1}$ relaxation of the solute molecules pertaining to $N_{\mathrm{S} 0}\left(t_{3 b}\right), N_{\mathrm{ES} 1}\left(1 ; t_{3 b}\right)$ and $N_{\mathrm{ES} 2}\left(2 ; t_{3 b}\right)$, respectively (related to eqn (S.15)). The initial condition of eqn (S.16) $N_{\mathrm{ES} 2}\left(3 ; t_{3 b}\right)=0$ is omitted herein. The only term on the right hand side denotes the change of $N_{\mathrm{ES} 2}(i=3)$ induced in this temporal segment by one-photon $\left.\left.\mid 0\right) \mathrm{S}_{1} \rightarrow \mid v\right) \mathrm{S}_{2}$ excitation of the solute molecules pertaining to $N_{\mathrm{ES} 1}\left(2 ; t_{3 b}\right)$. $N_{\mathrm{so}}\left(t_{3 b}\right)$ in the second terms of both eqn (S.13) and (S.15) is derived from eqn (S.5)-(S.7) with n set to be 2 .

When n exceeds 3 and is even, we analogize the above processes to obtain

$$
\begin{align*}
& N_{\mathrm{ES} 1}\left[(n / 2+1) ; t_{n f}\right]=\frac{N_{\mathrm{ES} 2}\left[(n / 2+1) ; t_{n b}\right]}{\tau_{\mathrm{S} 2}} \times \Delta t, \tag{S.17}\\
& N_{\mathrm{ES} 1}\left(i ; t_{n f}\right)=N_{\mathrm{ES} 1}\left(i ; t_{n b}\right)-\left[\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(i ; t_{n b}\right) I\left(t_{n b}\right)}{\hbar \omega}-\frac{N_{\mathrm{ES} 2}\left(i ; t_{n b}\right)}{\tau_{\mathrm{S} 2}}\right] \times \Delta t \tag{S.18}
\end{align*}
$$

and

$$
\begin{equation*}
N_{\mathrm{ES} 2}\left(i+1 ; t_{n f}\right)=N_{\mathrm{ES} 2}\left(i+1 ; t_{n b}\right)+\left[\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(i ; t_{n b}\right) I\left(t_{n b}\right)}{\hbar \omega}-\frac{N_{\mathrm{ES} 2}\left(i+1 ; t_{n b}\right)}{\tau_{\mathrm{S} 2}}\right] \times \Delta t \tag{S.19}
\end{equation*}
$$

with $2 \leq i \leq n / 2$. On the other hand, when n exceeds 3 and is odd, we simply omit eqn (S.17) and retain eqn (S.18) and (S.19) for $2 \leq i \leq(n+1) / 2$. No matter n is even or odd, for the case of $i=1$, we have

$$
\begin{equation*}
N_{\mathrm{ES} 1}\left(1 ; t_{n f}\right)=N_{\mathrm{ES} 1}\left(1 ; t_{n b}\right)+\left[\frac{\sigma_{\mathrm{S} 0} N_{\mathrm{S} 0}\left(t_{n b}\right) I\left(t_{n b}\right)}{\hbar \omega}-\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(1 ; t_{n b}\right) I\left(t_{n b}\right)}{\hbar \omega}\right] \times \Delta t \tag{S.20}
\end{equation*}
$$

and

$$
\begin{align*}
N_{\mathrm{ES} 2}\left(2 ; t_{n f}\right) & =N_{\mathrm{ES} 2}\left(2 ; t_{n b}\right) \\
& +\left[\frac{\beta N_{\mathrm{S} 0}\left(t_{n b}\right) I^{2}\left(t_{n b}\right)}{2 \hbar \omega}+\frac{\sigma_{\mathrm{S} 1} N_{\mathrm{ES} 1}\left(1 ; t_{n b}\right) I\left(t_{n b}\right)}{\hbar \omega}-\frac{N_{\mathrm{ES} 2}\left(2 ; t_{n b}\right)}{\tau_{\mathrm{S} 2}}\right] \times \Delta t \tag{S.21}
\end{align*}
$$

At the desired z, z^{\prime} and r, we sequentially integrate eqn (S.5)-(S.21) to derive $N_{\mathrm{ES} 1}\left(i ; z^{\prime}, r, 3 \tau\right)$ with i
ranging between 1 and 2501 and $N_{\mathrm{ES} 2}\left(i ; z^{\prime}, r, 3 \tau\right)$ with i ranging between 2 and 2501. Accordingly, we derive $N_{\mathrm{E}}\left(i ; z^{\prime}, r, 3 \tau\right)$ as a function of i at three incident pulse energy levels (1.1, 4.5, and $8.7 \mu \mathrm{~J}$, two concentrations, $4.2 \times 10^{17} \mathrm{~cm}^{-3}$ and $1.2 \times 10^{17} \mathrm{~cm}^{-3}$ and three penetration depths ($0.1,0.5$ and 1.0 mm). The results are shown in Fig. 4 of the Main Text.

