Vinyl Sulfone Modified- Azidofuranoside Building-Blocks: 1,4-/1,5-Disubstituted-1,2,3-Triazole Linked Trisaccharides via an Aqueous / Ionic-Liquid Route and "Click" Chemistry

Anirban Kayet, Arghya Ganguly, Tanmaya Pathak*

Department of Chemistry, Indian Institute of Technology Kharagpur,

Kharagpur 721 302, India

*Corresponding author: E. Mail: <u>tpathak@chem.iitkgp.ernet.in</u>

List of contents:

S2-S19 Experimental Section	S54 ¹ H/ ¹³ C spectra of compound 25b
S20 ¹ H/ ¹³ C spectra of compound 13	S56 ¹ H/ ¹³ C spectra of compound 5 (E)
S22 ¹ H/ ¹³ C spectra of compound 20a	S58 ¹ H/ ¹³ C spectra of compound 6 (E)
S24 ¹ H/ ¹³ C spectra of compound 20b	S60 ¹ H/ ¹³ C spectra of compound 7 (E)
S26 ¹ H/ ¹³ C spectra of compound 14	S62 ¹ H spectrum of DAF
S28 ¹ H/ ¹³ C spectra of compound 21a	S64 ¹ H spectrum of DAA
S30 ¹ H/ ¹³ C spectra of compound 21b	S66 ¹ H spectrum of DAC
S32 ¹ H/ ¹³ C spectra of compound 15	S68 ¹ H spectrum of compound 27
S34 ¹ H/ ¹³ C spectra of compound 22a	S69 ¹ H/ ¹³ C spectra of compound 28
S36 ¹ H/ ¹³ C spectra of compound 22b	S71 ¹ H/ ¹³ C spectra of compound 29
S38 ¹ H/ ¹³ C spectra of compound 16	S73 ¹ H/ ¹³ C spectra of compound 30
S40 ¹ H/ ¹³ C spectra of compound 23a	S75 ¹ H/ ¹³ C spectra of compound 31
S42 ¹ H/ ¹³ C spectra of compound 23b	S77 ¹ H/ ¹³ C spectra of compound 32
S44 ¹ H/ ¹³ C spectra of compound 17	S78 ¹ H/ ¹³ C spectra of compound 33
S46 ¹ H/ ¹³ C spectra of compound 24a	S80 ¹ H/ ¹³ C spectra of compound 34
S48 ¹ H/ ¹³ C spectra of compound 24b	S82 ¹ H/ ¹³ C spectra of compound 35
S50 ¹ H/ ¹³ C spectra of compound 18	S84 ¹ H/ ¹³ C spectra of compound 36
S52 ¹ H/ ¹³ C spectra of compound 25a	S86 References

Experimental Section

General methods: All reactions were conducted under nitrogen atmosphere. Melting points were determined in open-end capillary tubes and uncorrected. Carbohydrates and other fine chemicals were obtained from commercial suppliers and are used without purification. Solvents were dried and distilled following the standard procedures. TLC was carried out on pre-coated silica gel plates and the spots were visualized with UV light or by charring the plates dipped in 5% H₂SO4-MeOH solution or in 5% H₂SO4-vaniline-EtOH solution. Column chromatography was performed on silica gel (230-400 mesh). ¹H and ¹³C NMR for compounds were recorded at 200/400 MHz instrument using CDCl₃ and D₂O as the solvent. DEPT experiments have been carried out to identify the methylene carbons. Optical rotations were recorded at 589nm. High Resolution Mass Spectra (HRMS) were recorded on an Electrospray-Ionisation Mass Spectrometer.

Compound 13: To a well stirred solution of the known epoxide **12**¹ (1.00 g, 3.90 mmol) in DMF (15 mL) was added sodium azide (0.76 g, 11.72 mmol) and ammonium chloride (0.10 g, 1.95 mmol). The mixture was heated at 90 °C with stirring under N₂. After 16 h the reaction mixture was cooled, poured into an aqueous saturated solution of NaHCO₃, and the product was extracted with EtOAc (3 X 10 mL). The combined organic layer was dried over anhyd Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified over silica gel to afford the azido alcohol derivative **13** (1.05 g, 90 %). Eluent: EtOAc/petroleum ether (1:4). Yellow oil. $[\alpha]^{25.2}_{D}$ (+): 40.4 (*c* 0.72, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.40-1.68 (m, 10H), 3.38 (s, 3H), 3.75-3.82 (m, 2H), 3.92-4.03 (m, 1H), 4.12-4.21 (m, 2H), 4.30-4.39 (m, 1H), 4.88 (s, 1H). ¹³C

NMR (50 MHz, CDCl₃): δ 23.5 (CH₂), 23.7 (CH₂), 24.9 (CH₂), 34.1 (CH₂), 35.8 (CH₂), 54.7, 66.2 (CH₂), 67.6, 75.4, 79.8, 83.1, 108.7, 110.6. HRMS [ES⁺, (M+Na)⁺]: for C₁₃H₂₁N₃O₅Na found 322.1370, calcd 322.1379.

Compound 20a: Following the procedure described for the preparation of **10**, over 16 h compound **19**¹ (2.00 g, 7.81 mmol) was converted to **20a** (0.23 g, 10 %). Eluent: EtOAc/petroleum ether (1:4). Yellow oil. $[\alpha]^{25.2}_{D}$ (-): 119.2 (*c* 0.92, CHCl₃). ¹H NMR (200 MHz, CDCl3): δ 1.37-1.64 (m, 11H), 3.38 (s, 3H), 3.96-4.03 (m, 2H), 4.10-4.19 (m, 2H), 4.24-4.39 (m, 2H), 4.86 (s, 1H). ¹³C NMR (50 MHz, CDCl3): δ 23.9 (CH₂), 24.1 (CH₂), 25.1 (CH₂), 34.8 (CH₂), 36.6 (CH₂), 55.6, 70.0 (CH₂), 70.4, 73.6, 74.9, 83.5, 107.1, 110.2. HRMS [ES+, (M+Na)+]: for C₁₃H₂₁N₃O₅Na found 322.1382, calcd 322.1379.

Compound 20b: Following the procedure described for the preparation of **10**, over 16 h compound **19**¹ (2.00 g, 7.81 mmol) was converted to **20b** (1.86 g, 80 %). Eluent: EtOAc/petroleum ether (1:4). Yellow oil. $[\alpha]^{25.2}_{D}$ (-): 42.8 (*c* 0.82, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.58-1.67 (m, 10H), 3.42 (s, 3H), 3.66-3.76 (m, 1H), 3.87-4.06 (m, 5H), 4.09-4.16 (m, 1H), 4.76 (d, 1H, *J* = 4.2 Hz). ¹³C NMR (50 MHz, CDCl₃): δ 23.7 (CH₂), 23.8 (CH₂), 25.0 (CH₂), 34.6 (CH₂), 36.3 (CH₂), 55.0, 66.8 (CH₂), 68.6, 76.8, 77.3, 81.7, 101.9, 110.4. HRMS [ES⁺, (M+Na)⁺]: for C₁₃H₂₁N₃O₅Na found 322.1398, calcd 322.1379.

Compound 14: To a well-stirred solution of the azido alcohol derivative **13** (1.00 g, 3.34 mmol) in DMF (20 mL) was added sodium hydride (0.21 g, 4.34 mmol) at 0 °C. After 30 minutes benzyl bromide (0.60 mL, 5.01 mmol) was added to the reaction mixture and the mixture was stirred at ambient temperature under N2 for 6 h After completion of the reaction (TLC), the reaction mixture was poured into an aqueous saturated solution of NaHCO₃, and the product was extracted with EtOAc (3 X 10 mL). The combined organic layer was dried over anhyd Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure to get a residue. The residue was purified over silica gel column to afford the benzyl derivative 14 (1.17 g, 90 %). Eluent: EtOAc/petroleum ether (1:19). Yellow oil. [α]^{25.2}_D (+): 62.8 (c 0.82, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.40-1.67 (m, 10H), 3.34 (s, 3H), 3.84-3.97 (m, 4H), 4.08-4.15 (m, 2H), 4.53-4.66 (m, 2H), 4.90 (s, 1H), 7.27-7.38 (m, 5H). ¹³C NMR (50 MHz, CDCl₃): δ 23.8 (CH₂), 24.0 (CH₂), 25.2 (CH₂), 34.7 (CH₂), 36.4 (CH₂), 54.9, 67.0 (CH₂), 67.3, 72.2 (CH₂), 76.1, 82.6, 88.2, 107.0, 110.5, 127.9, 128.1, 128.6, 137.1. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₇N₃O₅Na found 412.1841, calcd 412.1848.

Compound 21a: Following the procedure described for the preparation of **14**, over 6 h compound **20a** (0.20 g, 0.67 mmol) was converted to **21a** (0.23 g, 90 %). Eluent: EtOAc/petroleum ether (1:19). Yellowish oil. $[\alpha]^{25.2}_{D}$ (-): 112.7 (*c* 0.90, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.40-1.64 (m, 10H), 3.39 (s, 3H), 3.93-4.22 (m, 5H), 4.36-4.46 (m, 1H), 4.67 (s, 2H), 4.77 (d, 1H, *J* = 1.8 Hz), 7.26-7.40 (m, 5H). ¹³C NMR (50 MHz, CDCl₃): δ 23.8 (CH₂), 24.1 (CH₂), 25.2 (CH₂), 34.9 (CH₂), 36.4 (CH₂), 55.9, 66.7

(CH₂), 69.4, 72.6 (CH₂), 73.2, 81.2, 82.2, 107.3, 109.7, 127.9, 128.4, 137.4. HRMS [ES+, (M+Na)+]: for C₂₀H₂₇N₃O₅Na found 412.1866, calcd 412.1848.

Compound 21b: Following the procedure described for the preparation of **14**, over 5 h compound **20b** (1.00 g, 3.34 mmol) was converted to **21b** (1.17 g, 90 %). Eluent: EtOAc/petroleum ether (1:19). Yellow oil. $[\alpha]^{25.2}_{D}$ (-): 58.8 (*c* 1.0, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.39-1.65 (m, 10H), 3.31 (s, 3H), 3.65-3.79 (m, 2H), 3.87-3.93 (m, 1H), 3.96-4.22 (m, 3H), 4.58-4.75 (m, 3H), 7.26-7.39 (m, 6H). ¹³C NMR (50 MHz, CDCl₃): δ 23.8 (CH₂), 23.9 (CH₂), 25.1 (CH₂), 34.6 (CH₂), 36.4 (CH₂), 54.9, 66.8, 67.0 (CH₂), 72.8 (CH₂), 77.3, 81.5, 82.6, 101.1, 110.4, 128.1 (2 X C), 128.5, 137.3. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₇N₃O₅Na found 412.1866, calcd 412.1848.

Compound 15: The compound **14** (1.50, 3.85 mmol) was treated with 80% aqueous acetic acid solution (20 mL) and the mixture was heated at 80 °C for 3 hrs. The solution was cooled and acid was co-evaporated with toluene under reduced pressure to get a residue. The residue was purified over silica gel column to afford the diol derivative **15** (0.89 g, 75%). Eluent: EtOAc/petroleum ether (2:3). Yellowish gum. [α]^{25.2}_D (+): 37.3 (*c* 0.72, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 2.90 (bs, 2H), 3.34 (s, 3H), 3.61-3.75 (m, 2H), 3.84-4.02 (m, 4H), 4.52-4.65 (m, 2H), 4.91 (s, 1H), 7.23-7.40 (m, 5H). ¹³C NMR (50 MHz, CDCl₃): δ 54.8, 65.1, 65.3 (CH₂), 69.8, 72.1 (CH₂), 81.5, 87.8, 106.7, 127.9, 128.1, 128.5, 136.8. HRMS [ES⁺, (M+Na)⁺]: for C₁₄H₁₉N₃O₅Na found 332.1200, calcd 332.1222.

Compound 22a: Following the procedure described for the preparation of **15**, over 2.5 h compound **21a** (0.50 g, 1.28 mmol) was converted to **22a** (0.30 g, 75 %). Eluent: EtOAc/petroleum ether (2:3). Yellowish gum. $[\alpha]^{25.2}_{D}$ (-): 56.7 (*c* 0.82, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 2.33 (bs, 1H), 3.04 (bs, 1H), 3.40 (s, 3H), 3.65-3.87 (m, 2H), 3.98-4.18 (m, 4H), 4.56 (d, 1H, *J* = 11.6 Hz), 4.76 (d, 1H, *J* = 11.6 Hz), 4.82 (d, 1H, *J* = 2.0 Hz), 7.26-7.41 (m, 5H). ¹³C NMR (50 MHz, CDCl₃): δ 55.8, 63.8 (CH₂), 68.9, 70.4, 72.6 (CH₂), 79.5, 81.9, 107.2, 127.9, 128.2, 128.6, 136.7. HRMS [ES+, (M+Na)+]: for C₁₄H₁₉N₃O₅Na found 332.1208, calcd 332.1222.

Compound 22b: Following the procedure described for the preparation of **15**, over 3 h compound **21b** (1.00 g, 2.57 mmol) was converted to **22b** (0.59 g, 75 %). Eluent: EtOAc/petroleum ether (2:3). Yellowish oil. $[\alpha]^{25.2}_{D}$ (-): 27.7 (*c* 0.85, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 2.34 (bs, 1H), 2.97 (bs, 1H), 3.36 (s, 3H), 3.65-3.88 (m, 5H), 4.23-4.31 (m, 1H), 4.60-4.75 (m, 3H), 7.26-7.38 (m, 5H). ¹³C NMR (50 MHz, CDCl₃): δ 55.7, 63.3 (CH₂), 65.1, 73.2 (CH₂), 73.3, 80.5, 83.1, 101.3, 128.4, 128.7, 137.2. HRMS [ES⁺, (M+Na)⁺]: for C₁₄H₁₉N₃O₅Na found 332.1221, calcd 332.1222.

Compound 16: To a well-stirred solution of the diol **15** (1.00 g, 3.24 mmol) in dry pyridine and toluene (1:1, 20 mL), *p*-toluene sulfonyl chloride (0.74 g, 3.88 mmol) was added at 0 °C and the mixture was stirred for half an hour at the same temperature. Then the reaction mixture was stored at 4 °C for 72 h. After completion of the reaction (TLC), mixture was poured into aqueous saturated solution of NaHCO₃ and the product was extracted with EtOAc (3 X 20 mL). The combined organic layer was dried over

anhydrous Na₂SO₄ and filtered, and the filtrate was concentrated under reduced pressure to get a residue. The residue was purified over silica gel column to afford the mono tosylated derivative **16** (1.27 g, 85%). Eluent: EtOAc/petroleum ether (1:4). Yellow gummy. [α]^{25.2}_D (+): 42.6 (*c* 0.92, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 2.45 (s, 3H), 2.53 (d, 1H, *J* = 4.4 Hz), 3.31 (s, 3H), 3.88-4.25 (m, 6H), 4.50-4.63 (m, 2H), 4.89 (s, 1H), 7.26-7.38 (m, 8H), 7.82 (d, 2H, *J* = 8.4 Hz). ¹³C NMR (50 MHz, CDCl₃): δ 21.7, 55.0, 65.6, 70.0, 70.7 (CH₂), 72.2 (CH₂), 81.2, 87.7, 106.9, 128.0, 128.1, 128.3, 128.7, 130.1, 132.5, 136.9, 145.3. HRMS [ES⁺, (M+Na)⁺]: for C₂₁H₂₅N₃O₇NaS found 486.1319, calcd 486.1311.

Compound 23a: Following the procedure described for the preparation of **16**, over 72 h compound **22a** (0.30 g, 0.97 mmol) was converted to **23a** (0.36 g, 80 %). Eluent: EtOAc/petroleum ether (3:7). Yellowish gum. $[\alpha]^{25.2}_{D}$ (+): 117.6 (*c* 0.82, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 2.43 (s, 3H), 2.89 (d, 1H, *J* = 3.6 Hz), 3.32 (s, 3H), 3.94 (t, 1H, *J* = 1.8 Hz), 4.05-4.32 (m, 5H), 4.53 (d, 1H, *J* = 11.6 Hz), 4.71 (d, 1H, *J* = 11.6 Hz), 4.76 (d, 1H, *J* = 1.8 Hz), 7.26-7.38 (m, 7H), 7.80 (d, 2H, *J* = 8.4 Hz). ¹³C NMR (50 MHz, CDCl₃): δ 21.5, 55.9, 68.6, 68.8, 71.6 (CH₂), 72.7 (CH₂), 79.0, 81.9, 107.4, 128.0 (2 × C), 128.3, 128.7, 129.8, 132.6, 136.5, 144.8. HRMS [ES+, (M+Na)+]: for C₂₁H₂₅N₃O₇NaS found 486.1320, calcd 486.1311.

Compound 23b: Following the procedure described for the preparation of **16**, over 72 h compound **22b** (1.00 g, 3.23 mmol) was converted to **23b** (1.27 g, 85 %). Eluent: EtOAc/petroleum ether (3:7). Yellowish gum. $[\alpha]^{25.2}_{D}$ (-): 34.6 (*c* 0.72, CHCl₃). ¹H NMR

(200 MHz, CDCl₃): δ 2.43 (s, 3H), 3.03 (bs, 1H), 3.26 (s, 3H), 3.63-3.70 (m, 1H), 3.76-3.82 (m, 2H), 3.98-4.06 (m, 1H), 4.14-4.25 (m, 2H), 4.54-4.71 (m, 3H), 7.26-7.35 (m, 7H), 7.79 (d, 2H, J = 8.4 Hz). ¹³C NMR (50 MHz, CDCl₃): δ 21.7, 55.6, 65.4, 71.1 (CH₂), 71.6, 73.1 (CH₂), 79.6, 82.9, 101.4, 128.1, 128.3, 128.6, 130.1, 132.4, 137.1, 145.3. HRMS [ES⁺, (M+Na)⁺]: for C₂₁H₂₅N₃O₇NaS found 486.1316, calcd 486.1311.

Compound 17: To a well-stirred solution of the monotosylated compound **16** (1.00 g, 2.16 mmol) in DMF (15 mL) was added 4-chloro thiophenol (0.47 g, 3.24 mmol) and TMG (0.30 mL, 2.16 mmol). The mixture was heated at 90 °C with stirring under N₂. After 5 h the reaction mixture was cooled, poured into an aqueous saturated solution of NaHCO₃, and the product was extracted with EtOAc (3 X 10 mL). The combined organic layer was dried over anhyd Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified over silica gel column to afford the sulfide derivative **17** (0.84 g, 90 %). Eluent: EtOAc/petroleum ether (1:5). Yellowish oil. [α]^{25.2}_D (+): 40.6 (*c* 0.80, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 2.63 (d, 1H, *J* = 3.2 Hz), 2.93-3.04 (m, 1H), 3.20-3.29 (m, 1H), 3.33 (s, 3H), 3.83-3.95 (m, 4H), 4.51-4.65 (m, 2H), 4.91 (s, 1H), 7.24-7.36 (m, 9H). ¹³C NMR (50 MHz, CDCl₃): δ 37.9 (CH₂), 54.8, 65.1, 69.7, 72.0 (CH₂), 83.0, 87.8, 106.8, 127.9, 128.1, 128.5, 129.2, 131.0, 132.5, 133.8, 136.8. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₂N₃O₄NaSCl found 458.0916, calcd 458.0917.

Compound 24a: Following the procedure described for the preparation of **17**, over 5 h compound **23a** (0.35 g, 0.77 mmol) was converted to **24a** (0.30 g, 90 %). Eluent: EtOAc/petroleum ether (1:4).Yellowish gum. $[\alpha]^{25.2}_{D}$ (-): 52.9 (*c* 1.2, CHCl₃). ¹H NMR

(200 MHz, CDCl₃): δ 3.01-3.05 (m, 2H), 3.34-3.41 (m, 4H), 3.96-3.99 (m, 1H), 4.08-4.15 (m, 3H), 4.54 (d, 1H, J = 11.6 Hz), 4.74 (d, 1H, J = 11.6 Hz), 4.80 (d, 1H, J = 2.0 Hz), 7.20-7.25 (m, 3H), 7.28-7.31 (m, 2H), 7.32-7.37 (m, 5H). ¹³C NMR (50 MHz, CDCl₃): δ 38.3 (CH₂), 55.9, 68.8, 69.2, 72.7 (CH₂), 81.4, 82.0, 107.2, 128.0, 128.4, 128.7, 128.9, 130.5, 131.8, 135.0, 136.4. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₂N₃O₄NaSCl found 458.0912, calcd 458.0917.

Compound 24b: Following the procedure described for the preparation of **17**, over 5 h compound **23b** (1.00 g, 2.16 mmol) was converted to **24b** (0.89 g, 95 %). Eluent: EtOAc/petroleum ether (1:4). Yellowish oil. $[\alpha]^{25.2}_{D}$ (-): 87.4 (*c* 0.92, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 2.81-2.93 (m, 2H), 3.20 (s, 3H), 3.60-3.73 (m, 2H), 3.76-3.85 (m, 1H), 4.17-4.25 (m, 1H), 4.55-4.73 (m, 3H), 7.22-7.38 (m, 9H). ¹³C NMR (50 MHz, CDCl₃): δ 38.7 (CH₂), 55.1, 65.0, 71.1, 72.7 (CH₂), 81.9, 82.6, 101.0, 128.0, 128.3, 129.0, 131.4, 132.5, 133.6, 136.9. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₂N₃O₄NaSCl found 458.0912, calcd 458.0917.

Compound 18: To a well-stirred solution of sulfide **17** (0.80 g, 1.84 mmol) in dry MeOH (10 mL) was added magnesium bis-(monoperoxyphthalate) hexahydrate (MMPP) (1.82 g, 3.68 mmol), and the mixture was stirred at room temperature under N₂. After 12 h MeOH was evaporated to dryness under reduced pressure, and the residue was dissolved in aqueous saturated solution of NaHCO₃. The aqueous part was washed with EtOAc (3 X 10 mL). The combined organic layer was dried over anhyd Na₂SO₄, filtered and the filtrate was concentrated under reduced pressure to get a residue. The residue was

purified over silica gel column to afford the sulfone derivative **18** (0.82 g, 95 %). Eluent: EtOAc/petroleum ether (3:7). Yellowish gum. $[\alpha]^{25.2}_{D}$ (+): 88.3 (*c* 0.86, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 3.24-3.28 (m, 1H), 3.30 (s, 3H), 3.36 (d, 1H, *J* = 2.4 Hz), 3.47 (dd, 1H, *J* = 1.4 Hz, 14.4 Hz), 3.82-3.92 (m, 3H), 4.24-4.28 (m, 1H), 4.51-4.59 (m, 2H), 4.85 (s, 1H), 7.26-7.39 (m, 5H), 7.54 (d, 2H, *J* = 8.4 Hz), 7.86 (d, 2H, *J* = 8.4 Hz). ¹³C NMR (50 MHz, CDCl₃): δ 55.1, 59.2 (CH₂), 65.5, 66.9, 72.2 (CH₂), 83.1, 87.7, 107.0, 127.9, 128.2, 128.6, 129.6, 129.8, 136.8, 137.8, 140.8. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₂N₃O₆NaSCl found 490.0814, calcd 490.0816.

Compound 25a: Following the procedure described for the preparation of **18**, over 12 h Compound **24a** (0.20 g, 0.46 mmol) was converted to **25a** (0.20 g, 95 %). Eluent: EtOAc/petroleum ether (1:2). Yellow gum. $[\alpha]^{25.2}_{D}$ (+): 40.6 (*c* 0.72, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 3.26-3.40 (m, 5H), 3.55-3.63 (m, 1H), 3.95-4.06 (m, 3H), 4.49 (d, 2H, *J* = 11.6 Hz), 4.67 (d, 1H, *J* = 11.6 Hz), 4.77 (d, 1H, *J* = 1.6 Hz), 7.23-7.28 (m, 2H), 7.34-7.42 (m, 3H), 7.47(d, 2H, *J* = 8.4 Hz), 7.82 (d, 2H, *J* = 8.6 Hz). ¹³C NMR (50 MHz, CDCl₃): δ 56.2, 59.7 (CH₂), 66.4, 69.0, 72.9 (CH₂), 81.4, 81.8, 107.5, 128.2, 128.6, 128.9, 129.5, 129.7, 136.4, 138.5, 140.5. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₂N₃O₆NaSCl found 490.0814, calcd 490.0816.

Compound 25b: Following the procedure described for the preparation of **18**, over 12 h compound **24b** (0.90 g, 2.07 mmol) was converted to **25b** (0.92 g, 95 %). Eluent: EtOAc/petroleum ether (1:2). Yellowish gum. $[\alpha]^{25.2}_{D}$ (-): 62.9 (*c* 0.88, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 3.00 (s, 3H), 3.14-3.20 (m, 1H), 3.46-3.65 (m, 4H), 3.73-3.80 (m,

1H), 3.96-4.05 (m, 1H), 4.13-4.20 (m, 1H), 4.49 (d, 1H, J = 4.2 Hz), 4.56-4.72 (m, 2H), 7.26-7.34 (m, 5H), 7.53-7.60 (m, 2H), 7.85-7.90 (m, 2H). ¹³C NMR (50 MHz, CDCl₃): δ 55.2, 59.5 (CH₂), 65.7, 68.6, 73.1 (CH₂), 81.5, 82.7, 101.4, 128.3, 128.6, 129.7, 129.9, 137.1, 137.4, 141.0. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₂N₃O₆NaSCl found 490.0814, calcd 490.0816.

Compound 5: To a well-stirred solution of sulfone 18 (0.80 g, 1.71 mmol) in pyridine (10 mL) was added methanesulfonyl chloride (0.20 mL, 2.57 mmol) in pyridine (2 mL) dropwise at 0 °C under N₂. After completion of the addition, the reaction mixture was kept at 4 °C. After 24 h (TLC), the reaction mixture was poured into an aqueous saturated solution of NaHCO₃ and the product was extracted with EtOAc (3 X 10 mL). The combined organic layer was dried over anhyd Na₂SO₄ filtered and the filtrate was concentrated under reduced pressure to get a residue. The residue was heated under reflux with pyridine. After 2 h (TLC) the reaction mixture poured into ice-cold water, and the aqueous layer was extracted with EtOAc (3 X 10 mL). The combined organic layers were dried over anhyd Na₂SO₄ filtered, and the filtrate was concentrated under reduced pressure to get a residue. The residue was purified over silica gel to afford the vinylsulfone 5 (0.69 g, 90 %). Eluent: EtOAc/petroleum ether (1:4). Yellow gum. $[\alpha]^{25.2}$ (+): 118.1 (c 0.90, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 3.33 (s, 3H), 3.61-3.67 (m, 1H), 3.97-4.00 (m, 1H), 4.42-4.49 (m, 2H), 4.57 (s, 2H), 4.93 (s, 1H), 6.67 (dd, 1H, J =1.5 Hz, 15.0 Hz), 7.03 (dd, 1H, J = 4.0 Hz, 15.0 Hz), 7.26-7.40 (m, 5H), 7.51 (d, 2H, J =8.6 Hz), 7.82 (d, 2H, J = 8.4 Hz). ¹³C NMR (50 MHz, CDCl₃): δ 55.3, 68.8, 72.5 (CH₂), 78.1, 88.1, 107.3, 127.9, 128.2, 128.6, 129.3, 129.7, 131.4, 136.7, 138.3, 140.3, 141.5. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₀N₃O₅NaSCl found 472.0707, calcd 472.0710 (E).

Compound 6: Following the procedure described for the preparation of **5**, over 26 h compound **25a** (0.15 g, 0.32 mmol) was converted to **6** (0.12 g, 85 %). Eluent: EtOAc/petroleum ether (1:4). Brownish gum. $[\alpha]^{25.2}_{D}$ (+): 41.7 (*c* 0.97, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 3.40 (s, 3H), 3.87-3.91 (m, 2H), 4.04-4.10 (m, 1H), 4.51 (d, 1H, *J* = 12.0 Hz), 4.66 (d, 1H, *J* = 12.0 Hz), 4.75-4.82 (m, 2H), 6.60 (dd, 1H, *J* = 1.6 Hz, 15.0 Hz), 7.04 (dd, 1H, *J* = 4.6 Hz, 15.0 Hz), 7.25-7.44 (m, 8H), 7.73-7.78 (m, 2H). ¹³C NMR (50 MHz, CDCl₃): δ 56.3, 68.7, 72.7 (CH₂), 78.4, 82.1, 107.1, 127.9, 128.2, 128.6, 129.1, 129.5, 131.6, 136.6, 138.6, 139.9, 143.0. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₀N₃O₅NaSCl found 472.0707, calcd 472.0710 (E).

Compound 7: Following the procedure described for the preparation of **5**, over 26 h compound **25b** (0.90 g, 1.93 mmol) was converted to **7** (0.78 g, 90 %). Eluent: EtOAc/petroleum ether (1:4). Yellow gum. $[\alpha]^{25.2}_{D}$ (-): 117.8 (*c* 0.80, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 3.31 (s, 3H), 3.89 (dd, 1H, *J* = 4.0 Hz, 8.8 Hz), 4.02 (t, 1H, *J* = 8.3 Hz), 4.19-4.26 (m, 1H), 4.59-4.72 (m, 3H), 6.55 (dd, 1H, *J* = 1.6 Hz, 15.0 Hz), 6.98 (dd, 1H, *J* = 4.6 Hz, 15.0 Hz), 7.26-7.38 (m, 5H), 7.48-7.54 (m, 2H), 7.78-7.83 (m, 2H). ¹³C NMR (50 MHz, CDCl₃): δ 55.3, 66.3, 72.7 (CH₂), 76.8, 82.2, 101.0, 127.9, 128.0, 128.3, 129.0, 129.5, 130.9, 136.7, 138.2, 140.0, 143.7. HRMS [ES⁺, (M+Na)⁺]: for C₂₀H₂₀N₃O₅NaSCl found 472.0705, calcd 472.0710 (E).

General procedure for the synthesis of Ionic Liquids (ILs): A mixture of N, Ndimethyl ethanol amine (0.50 g, 5.6 mmol) and HCOOH (0.2 mL, 5.6 mmol), CH₃COOH (0.32mL, 5.6 mmol) or HCl (0.2 mL, 5.6 mmol) were stirred at room temperature for 24 h to afford the corresponding ILs, N,N-dimethyl ethanol ammonium formate (DAF), N,N-dimethyl ethanol ammonium acetate (DAA) and N,N-dimethyl ethanol ammonium chloride (DAC) which were directly used for the triazolylation reaction without further purification.

Ionic liquid DAF: Following the general procedure, over 24 h **DEA** (0.50 g, 5.6 mmol) was converted to the ionic liquid **DAF** (0.72 g, 95 %). Colourless viscous oil. ¹H NMR (200 MHz, D₂O): δ 2.97 (s, 6H), 3.33-3.36 (m, 2H), 3.92-3.95 (m, 2H), 8.50 (s, 1H). ¹³C NMR (50 MHz, D₂O): δ 42.8, 55.2 (CH₂), 58.8 (CH₂), 170.7. HRMS [ES⁺, (M+H)⁺]: for C₅H₁₄NO₃ found 136.0906, calcd 136.0901.

Ionic liquid DAA: Following the general procedure, over 24 h **DEA** (0.50 g, 5.6 mmol) was converted to the ionic liquid **DAA** (0.82 g, 98 %). Colourless viscous oil. ¹H NMR (200 MHz, D₂O): δ 1.97 (s, 3H), 2.97 (s, 6H), 3.31-3.36 (m, 2H), 3.92-3.97 (m, 2H). ¹³C NMR (50 MHz, D₂O): δ 23.1, 42.8, 55.2 (CH₂), 58.8 (CH₂), 180.9. HRMS [ES⁺, (M+H)⁺]: for C₆H₁₆NO₃ found 150.1055, calcd 150.1057.

Ionic liquid DAC: Following the general procedure, over 24 h **DEA** (0.50 g, 5.6 mmol) was converted to the ionic liquid **DAC** (0.67 g, 95 %). Colourless viscous oil. ¹H NMR (200 MHz, D₂O): δ 2.83(s, 3H), 2.84 (s, 3H), 3.15-3.21 (m, 2H), 3.90-3.95 (m, 2H). ¹³C

NMR (50 MHz, D₂O): δ 43.2, 56.1 (CH₂), 59.0 (CH₂). HRMS [ES⁺, (M+Na)⁺]: for C₄H₁₂ClNONa found 148.0615, calcd 148.0613.

General procedure for the synthesis of 1,5-Disubstituted 1,2,3-triazole linked disaccharides 27-31. A mixture of vinyl sulfone modified carbohydrate (1 equiv) and azidosugar (1.5 equiv) in water (10 mL/mmol) was heated under refluxing condition using ILs (DAF, DAA and DAC) (1:1 H₂O/IL) for 24-30 h to afford 1,5-disubstituted 1,2,3-triazole linked disaccharides. The 1,2-*O*-isopropyledene groups of the vinyl sulfone and azidosugars **8** and **9** were unstable due to the elemination of sulfinic acid, and hence NaHCO₃ (1.5 equiv) was added to the reaction mixture.

Compound 27²: Following the general procedure, over 24-30 h compound **26**³ (0.25 g, 0.55 mmol) was converted to **27** in 76-80% yield. Eluent: EtOAc/petroleum ether (1:3). Yellow gum. $[\alpha]^{27}_{D}$ (-): 65.2 (*c* 0.9, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 1.28 (s, 3H), 1.35 (s, 3H), 1.38 (s, 3H), 1.51 (s, 3H), 4.00-4.04 (m, 2H), 4.22-4.36 (m, 2H), 4.45-4.68 (m, 8H), 5.46 (d, 1H, *J* = 2.8 Hz), 5.87-5.91 (m, 2H), 6.96-6.99 (m, 2H), 7.23-7.35 (m, 9H), 7.67 (s, 1H).

Compound 28: Following the general procedure, over 24 h compound **5** (0.30 g, 0.67 mmol) was converted to **28** (0.30 g, 78 %). Eluent: EtOAc/petroleum ether (1:4). Yellowish gum. $[\alpha]^{27.6}_{D}$ (-): 41.8 (*c* 0.76, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.29 (s, 3H), 1.41 (s, 3H), 3.44 (s, 3H), 4.02-4.13 (m, 3H), 4.33-4.45 (m, 3H), 4.53 (d, 2H, J = 5.0 Hz), 4.59-4.71 (m, 4H), 4.86 (d, 1H, J = 3.2 Hz), 5.47 (d, 1H, J = 6.0 Hz), 5.94 (d,

1H, J = 3.6 Hz), 7.08-7.13 (m, 2H), 7.26-7.34 (m, 8H), 7.78 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 26.3, 26.8, 47.6 (CH₂), 56.7, 69.3, 72.1 (CH₂), 72.8 (CH₂), 73.1, 79.3, 81.2, 81.9, 82.1, 105.2, 107.6, 112.1, 127.9, 128.3 (2 X C), 128.7, 134.1, 134.7, 136.5, 137.1. HRMS [ES⁺, (M+H)⁺]: for C₂₉H₃₅N₆O₇ found 579.2541, calcd 579.2567.

Compound 29: Following the general procedure, over 30 h compound **5** (0.30 g, 0.67 mmol) was converted to **29** (0.37 g, 80 %). Eluent: EtOAc/petroleum ether (1:5). Yellowish gum. [α]^{27.6}_D (-): 39.8 (*c* 0.85, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.32 (s, 3H), 1.48 (s, 3H), 3.40 (s, 3H), 4.03-4.12 (m, 3H), 4.22 (s, 2H), 4.27-4.49 (m, 5H), 4.62-4.83 (m, 4H), 5.48 (d, 1H, *J* = 5.0 Hz), 5.92 (d, 1H, *J* = 3.8 Hz), 7.05-7.12 (m, 5H), 7.21-7.28 (m, 11H), 7.82 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 26.4, 26.9, 50.6 (CH₂), 56.5, 69.4, 71.9 (CH₂), 72.7 (CH₂), 73.1, 73.3 (CH₂), 75.7, 80.1, 81.0, 81.5, 81.6, 105.2, 107.4, 112.1, 127.9 (2 X C), 128.0 (2 X C), 128.2, 128.3, 128.4, 128.7, 129.3, 134.1, 135.3, 136.5, 137.1, 137.5. HRMS [ES⁺, (M+H)⁺]: for C₃₇H₄₃N₆O₈ found 699.3124, calcd 699.3142.

Compound 30: Following the general procedure, over 24 h compound 7 (0.30 g, 0.67 mmol) was converted to **30** (0.30 g, 77 %). Eluent: EtOAc/petroleum ether (1:3). Yellowis gum. $[\alpha]^{27.6}_{D}$ (-): 92.3 (*c* 0.88, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.28 (s, 3H), 1.41 (s, 3H), 3.31 (s, 3H), 3.87-3.94 (m, 1H), 4.02 (s, 1H), 4.38 (t, 1H, J = 8.7 Hz), 4.51-4.87 (m, 11H), 5.93 (d, 1H, J = 3.8 Hz), 7.26-7.39 (m, 10H), 7.62 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 26.3, 26.8, 47.0 (CH₂), 55.7, 67.6, 70.8, 72.1 (CH₂), 73.3 (CH₂), 79.2, 81.7, 82.1, 82.5, 101.1, 105.2, 112.1, 127.9, 128.3, 128.4, 128.5, 128.7, 128.8,

132.3, 136.9, 137.2, 137.4. HRMS [ES⁺, (M+H)⁺]: for C₂₉H₃₅N₆O₇ found 579.2546, calcd 579.2567.

Compound 31: Following the general procedure, over 30 h compound 7 (0.30 g, 0.67 mmol) was converted to **31** (0.35 g, 75 %). Eluent: EtOAc/petroleum ether (1:3). Yellow gum. $[\alpha]^{27.6}_{D}$ (+): 57.8 (*c* 0.86, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.31 (s, 3H), 1.48 (s, 3H), 3.30 (s, 3H), 3.85-3.92 (m, 1H), 4.04-4.18 (m, 4H), 4.24-4.43 (m, 4H), 4.53-4.70 (m, 6H), 4.80-4.89 (m, 2H), 5.94 (d, 1H, *J* = 3.8 Hz), 7.00-7.05 (m, 2H), 7.18-7.38 (m, 13H), 7.66 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 26.4, 26.8, 50.6 (CH₂), 55.6, 68.1, 70.8, 71.7 (CH₂), 73.1 (CH₂), 73.4 (CH₂), 75.7, 80.3, 81.5, 81.7, 82.4, 101.0, 105.2, 112.0, 127.7, 127.8, 127.9, 128.1, 128.3, 128.4, 128.6, 128.7, 132.5, 136.9, 137.1, 137.5, 137.9. HRMS [ES⁺, (M+H)⁺]: for C₃₇H₄₃N₆O₈ found 699.3129, calcd 699.3142.

Procedure for the synthesis of 1,5-Disubstituted 1,2,3-triazole linked trisaccharide 32. A mixture of 1,5-DT linked disaccharide **30** (1 equiv, 0.15 g, 0.26 mmol) having one unreacted azido group and another vinyl sulfone modified carbohydrate **10** (1.2 equiv) in water (10 mL/mmol) was heated under refluxing condition using DAF (1:1 H₂O/DAF) for 48 h. The 1,2-*O*-isopropyledene groups of the 1,5-DT **30** and vinyl sulfone modified carbohydrate **10** were unstable due to the elemination of sulfinic acid, and hence NaHCO₃ (1.5 equiv) was added to the reaction mixture. After completion of reaction, extracted with EtOAc (3 X 10 mL) and the organic layer was dried over anhyd. Na₂SO₄, filtered and filtrate was concentrated under reduced pressure to get a residue. The residue was purified by silica-gel column chromatography to afford 1,5-disubstituted 1,2,3triazole linked trisaccharide **32** (0.04 g, 20 %). Eluent: EtOAc/petroleum ether (2:3). Yellowish gum. $[\alpha]^{28}_{D}$ (+): 87.6 (*c* 0.68, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.26 (s, 6H), 1.34 (s, 3H), 1.38 (s, 3H), 3.39 (s, 3H), 3.85-4.10 (m, 1H), 4.12-4.58 (m, 9H), 4.65 (d, 1H, *J* = 3.8 Hz), 4.87-4.92 (m, 2H), 5.12 (d, 1H, *J* = 3.6 Hz), 5.46 (d, 1H, *J* = 3.0 Hz), 5.55-5.64 (m, 2H), 5.94 (d, 1H, *J* = 3.6 Hz), 6.22 (d, 1H, *J* = 3.6 Hz), 6.91-6.96 (m, 2H), 7.14-7.41 (m, 13H), 7.68 (s, 1H), 7.78 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 26.4, 26.5, 27.1, 27.2, 51.1 (CH₂), 57.4 (CH₂), 62.4 (CH₂), 72.1, 72.5, 72.8, 74.8, 74.9, 79.0, 82.3, 82.6, 83.1, 83.8, 104.9, 105.3, 108.9, 112.4, 112.9, 125.2, 128.1, 128.3, 128.4, 128.8, 128.9, 132.8, 133.2, 133.7, 134.5, 135.4, 136.5, 136.8. HRMS [ES⁺, (M+H)⁺]: for C₄₅H₅₃N₆O₁₁ found 852.3699, calcd 852.3694..

General procedure for the synthesis of 1,2,3-triazole linked trisaccharides 33-36. To a well-stirred solution of the 1,5-disubstituted 1,2,3-triazole linked disaccharides 28-31 (1 equiv) and a known alkyne 11^4 (1 equiv) in 'BuOH/H₂O (1:1) was added CuSO₄ (0.5 equiv) and sodium ascorbate (1 equiv). The reaction mixture was stirred at room temperature for 30-36 h. After completion of the reaction (TLC), the reaction mixture was poured into aqueous saturated solution of NaHCO₃ and extracted with EtOAc (3 X 10 mL). The organic phase was dried over anhyd. Na₂SO₄, filtered and the filtrate was concentrated under reduced pressure to get a residue. The residue was purified over silica gel column to afford the 1,2,3-triazole linked trisaccharides **33-36**.

Compound 33: Following the general procedure, over 36 h compound **28** (0.35 g, 0.60 mmol) was converted to **33** (0.52 g, 90 %). Eluent: EtOAc/petroleum ether (1:1). Yellowish gum. $[\alpha]^{27.6}_{D}$ (+): 55.8 (*c* 0.88, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.30

(s, 3H), 1.41 (s, 3H), 1.98 (s, 3H), 2.00 (s, 3H), 2.03 (s, 3H), 2.08 (s, 3H), 3.42 (s, 3H), 3.71-3.77 (m, 1H), 4.04 (d, 1H, J = 3.2 Hz), 4.19-4.25 (m, 2H), 4.31 (s, 2H), 4.42-4.51 (m, 2H), 4.61-4.71 (m, 5H), 4.77-5.24 (m, 9H), 5.76 (d, 1H, J = 6.2 Hz), 5.95 (d, 1H, J = 3.8 Hz), 6.91-6.96 (m, 2H), 7.18-7.31 (m, 10H), 7.44 (s, 1H), 7.87 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 20.5, 20.7, 26.1, 26.6, 47.7 (CH₂), 56.6, 61.7 (CH₂), 62.8 (CH₂), 68.2, 69.9, 71.2, 71.9 (C + CH₂), 72.7, 73.1 (C + CH₂), 79.2, 81.5, 81.8, 81.9, 100.0, 105.1, 106.9, 111.9, 123.8, 127.7, 127.8, 128.1, 128.2, 128.5, 134.0, 134.5, 136.1, 137.0, 144.6, 169.3, 169.4, 170.1, 170.5. HRMS [ES⁺, (M+H)⁺]: for C₄₆H₅₇N₆O₁₇ found 965.3760, calcd 965.3780.

Compound 34: Following the general procedure, over 36 h compound **29** (0.40 g, 0.57 mmol) was converted to **34** (0.56 g, 90 %). Eluent: EtOAc/petroleum ether (1:1), Yellowish gum. [α]^{27.6}_D (-): 60.0 (*c* 0.93, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.33 (s, 3H), 1.49 (s, 3H), 1.97 (s, 3H), 2.00 (s, 3H), 2.03 (s, 3H), 2.08 (s, 3H), 3.37 (s, 3H), 3.71-3.78 (m, 1H), 4.05-4.45 (m, 11H), 4.62-4.70 (m, 3H), 4.76-4.88 (m, 6H), 4.94-5.21 (m, 5H), 5.75 (d, 1H, *J* = 5.6 Hz), 5.93 (d, 1H, *J* = 3.6 Hz), 6.92-6.97 (m, 3H), 7.06- 7.27 (m, 16H), 7.43 (s, 1H), 7.91 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 20.6, 20.7, 26.3, 26.8, 50.5 (CH₂), 56.5, 61.8 (CH₂), 62.7 (CH₂), 68.3, 70.0, 71.2, 71.8 (CH₂), 71.9, 72.8, 73.0 (CH₂), 73.2 (CH₂), 75.6, 79.9, 81.3, 81.5, 81.6, 100.0, 105.1, 106.8, 112.0, 123.9, 127.8 , 128.1, 128.2, 128.4, 128.6, 134.1, 135.1, 136.2, 137.0, 137.4, 144.5, 169.3, 169.4, 170.2, 170.6. HRMS [ES⁺, (M+H)⁺]: for C₅₄H₆₅N₆O₁₈ found 1085.4316, calcd 1085.4355.

Compound 35: Following the general procedure, over 30 h compound **30** (0.30 g, 0.52 mmol) was converted to **35** (0.46 g, 92 %). Eluent: EtOAc/petroleum ether (1:1).

S-18

Yellowish gum. [α]^{27.6}_D (+): 70.4 (*c* 0.92, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.21 (s, 3H), 1.33 (s, 3H), 1.84 (s, 3H), 1.91 (s, 3H), 1.95 (s, 3H), 1.98 (s, 3H), 3.23 (s, 3H), 3.63-3.67 (m, 1H), 3.92 (d, 1H, *J* = 2.8 Hz), 4.05-4.37 (m, 2H), 4.39-4.66 (m, 11H), 4.72-4.77 (m, 3H), 4.83-5.18 (m, 3H), 5.27-5.36 (m, 1H), 5.71 (d, 1H, *J* = 8.6 Hz), 5.85 (d, 1H, *J* = 3.6 Hz), 7.13-7.24 (m, 10H), 7.47 (s, 1H), 7.59 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 20.6 (3 x C), 20.7, 26.2, 26.7, 47.0 (CH₂), 55.6, 61.7 (CH₂), 62.6 (CH₂), 67.2, 68.3, 70.2, 71.1, 71.8 (CH₂), 71.9, 72.7, 73.1 (CH₂), 79.2, 81.4, 81.5, 82.0, 100.0, 101.1, 105.0, 112.0, 124.1, 127.8, 128.0, 128.2, 128.5 (2 x C), 128.6, 132.6, 136.2, 136.5, 137.1, 144.4, 169.3, 169.4, 170.2, 170.6. HRMS [ES⁺, (M+H)⁺]: for C₄₆H₅₇N₆O₁₇ found 965.3745, calcd 965.3780.

Compound 36: Following the general procedure, over 36 h compound **31** (0.40 g, 0.57 mmol) was converted to **36** (0.55 g, 89 %). Eluent: EtOAc/petroleum ether (9:11). Yellowish gum. $[\alpha]^{27.6}_{D}$ (+): 69.3 (*c* 0.88, CHCl₃). ¹H NMR (200 MHz, CDCl₃): δ 1.32 (s, 3H), 1.49 (s, 3H), 1.90 (s, 3H), 2.00 (s, 3H), 2.03 (s, 3H), 2.10 (s, 3H), 3.31 (s, 3H), 3.71-3.76 (m, 1H), 4.04 (d, 1H, *J* = 3.0 Hz), 4.10-4.26 (m, 5H), 4.32-4.53 (m, 6H), 4.60-4.85 (m, 7H), 5.01-5.25 (m, 4H), 5.82 (d, 1H, *J* = 8.6 Hz), 5.91 (d, 1H, *J* = 3.6 Hz), 6.99-7.02 (m, 2H), 7.18-7.35 (m, 14H), 7.69 (s, 1H). ¹³C NMR (50 MHz, CDCl₃): δ 20.6 (3 X C), 20.7, 26.3, 26.7, 50.0 (CH₂), 55.6, 61.7 (CH₂), 62.5 (CH₂), 67.6, 68.2, 70.2, 71.1, 71.5 (CH₂), 71.9, 72.7, 73.0 (CH₂), 73.1 (CH₂), 80.2, 81.3, 81.4, 81.6, 100.0, 100.9, 105.0, 111.9, 123.8, 127.6 (2 X C), 127.7, 127.9, 128.2 (2 X C), 128.4, 128.5, 128.6, 132.7, 136.5, 136.6, 137.0, 137.6, 144.3, 169.3, 169.4, 170.1, 170.6. HRMS [ES⁺, (M+H)⁺]: for C₅₄H₆₅N₆O₁₈ found 1085.4346, calcd 1085.4355.

¹³C NMR spectrum of 13

¹³C NMR spectrum of 20b

S-24

¹³C NMR spectrum of 14

¹³C NMR spectrum of 21a

S-28

S-30

¹³C NMR spectrum of 22b

¹³C NMR spectrum of 16

¹³C NMR spectrum of 23a

DEPT spectrum of 23a

¹³C NMR spectrum of 23b

S-45

DEPT spectrum of 24a

¹³C NMR spectrum of 24b

¹³C NMR spectrum of 18

¹³C NMR spectrum of 25a

S-54

S-59

¹H NMR spectrum of 7

¹³C NMR spectrum of 7

DEPT spectrum of 7

¹³C NMR spectrum of DAF

DEPT spectrum of DAF

¹³C NMR spectrum of DAA

DEPT spectrum of DAA

¹³C NMR spectrum of DAC

¹³C NMR spectrum of 28

¹³C NMR spectrum of 29

¹³C NMR spectrum of 30

¹³C NMR spectrum of 31

¹³C NMR spectrum of 32

¹³C NMR spectrum of 33

S-81

¹³C NMR spectrum of 34

DEPT spectrum of 34

¹H NMR spectrum of 35

¹H NMR spectrum of 36

¹³C NMR spectrum of 36

DEPT spectrum of 36

References:

- [1] I. Das, C. G. Suresh, J-L. Decout and T. Pathak, Carbohydr. Res., 2008, 343, 1287
- [2] A. Kayet, S. Dey and T. Pathak, Tetrahedron Lett., 2015, 56, 5521
- [3] A. Kayet and T. Pathak, J. Org. Chem., 2013, 78, 9865
- [4] H. B. Mereyala and S. R. Gurrala, Carbohydr. Res., 1998, 307, 351