Supporting Information

Whey protein isolate/gum arabic intramolecular soluble complexes improving the physical and oxidative stabilities of conjugated linoleic acid emulsions

Xiaolin Yao^{a, b}, Shengping Xiang^a, Ke Nie^a, Zhiming Gao^{a, b}, Weiqi Zhang^a, Yapeng Fang^{a, b, *}, 6 Katsuyoshi Nishinari^{a, b}, Glyn O. Phillips^a, Fatang Jiang^a

^a Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Pharmaceutical Engineering,
8 Faculty of Light Industry, Hubei University of Technology, Wuhan 430068, China.

^b Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology,
10 Wuhan 430068, China.

* To whom correspondence should be addressed. Tel: +86 (0) 27-88015996; Fax: +86 (0)27-88015996;

12 Email: fangypphrc@163.com.

14

20 Structural transition induced by in situ acidification

The change of pH with time during GDL acidification can be monitored by pH meter. The change of

- 22 turbidity and light scattering with time during GDL acidification can be monitored by UV/Vis and dynamic light scattering, respectively. Correlation of data at the same time point resulted in the
- 24 turbidity-pH and light scattering-pH curves (Figure S1). This has been described clearly in a previous publication. ^{1,2}

Figure S1 Change of pH with time during GDL-induced acidification for a 0.3wt% WPI/GA mixture at r = 0.5 with 10mM NaCl (A). Evolution of the turbidity at 500 nm (τ , \Box), scattered light intensity at 1720 (1172) τ) and τ is the second second

30 173° (*I*173, \circ), and hydrodynamic diameter (D_h , Δ) as a function of time during GDL-induced acidification in the same system (B).

32 Nano-sized range of ISCs complexes

ISCs represented a rather stable state of the electrostatic complexation of WPI/GA, and D_h attains a 34 nearly constant value of ~ 50 nm within this specific pH range (4.0-5.4). The change of D_h for ISCs during GDL acidification for a 0.3wt% WPI/GA mixture at r = 0.5 with 10mM NaCl is shown in Figure 36 S2.

38

Figure S2 Evolution of hydrodynamic diameter (D_h) as a function of pH during GDL-induced 40 acidification for a 0.3wt% WPI/GA mixture at r = 0.5 with 10mM NaCl (A). The particle size distribution of ISCs is given at pH 4.4 (B).

42

References

44 1 G. Mekhloufi, C. Sanchez, D. Renard, S. Guillemin and J. Hardy, Langmuir, 2004, 21, 386-394.

2 X. Li, Y. Fang, S. Al-Assaf, G. O. Phillips, X. Yao, Y. Zhang, M. Zhao, K. Zhang and F. Jiang, 46 *Langmuir*, 2012, 28, 10164-10176.