Supporting Information

Etching synthesis of iron oxide nanoparticles for adsorption of arsenic from water

Wei Cheng, Weidong Zhang, Lijuan Hu, Wei Ding, Feng Wu and Jinjun Li *

School of Resources and Environmental Sciences, Hubei Key Lab of Bioresources and

Environmental Biotechnologies, Wuhan University, Wuhan 430079, China

Figure captions

Fig. S1⁺ Energy-dispersive spectrometry pattern of (a) Fe-Si composite and (b) nano-iron oxide.

Fig. S2[†]. X-ray diffraction spectrum of nano-iron oxide.

Fig. S3[†] Nitrogen adsorption–desorption isotherm and BJH pore size distribution of nanoiron oxide.

Fig. S4[†] Point of zero charge (PZC) of nano-iron oxide.

Fig. S5[†] (a) As(III) and (b) As(V) speciation for various pH values (calculated using Visual MINTEQ3.1).

Fig. S6[†] Influence of initial H₂O₂ concentration on As(III) removal.

Fig. S1⁺ Energy-dispersive spectrometry pattern of (a) Fe-Si composite and (b) nano-iron oxide.

Fig. S2[†] X-ray diffraction spectrum of nano-iron oxide.

Fig. S3[†] Nitrogen adsorption–desorption isotherm and BJH pore size distribution of nano-iron oxide.

Fig. S4[†] Point of zero charge (PZC) of nano-iron oxide.

Fig. S5⁺ (a) As(III) and (b) As(V) speciation for various pH values (calculated using Visual MINTEQ3.1).

Fig. S6⁺ Influence of initial H_2O_2 concentration on As(III) removal at pH 7.