Electronic Supplementary Information

For the

Manuscript Entitled

Lanthanide-based coordination polymers as the promising heterogeneous catalysts for ring-opening reactions

Gulshan Kumar, Girijesh Kumar, and Rajeev Gupta*

Department of Chemistry, University of Delhi

Delhi – 110 007, India

List of Figures:

Figure S1. FTIR spectrum of 1-Eu.

Figure S2. FTIR spectrum of 1-Tb.

Figure S3. Thermal Gravimetric Analysis (TGA, red trace) and Differential scanning colorimetric (DSC, blue trace) plots for **1-Eu**.

Figure S4. Thermal Gravimetric Analysis (TGA, red trace) and Differential scanning colorimetric (DSC, blue trace) plots for **1-Tb**.

Figure S5. Diffuse reflectance UV-Vis spectrum of 1-Eu.

Figure S6. Diffuse reflectance UV-Vis spectrum of 1-Tb.

Figure S7. X-ray Powder Diffraction (XRPD) pattern for as synthesized **1-Eu** (red trace) and the one simulated from the Mercury 3.0 using single crystal data (blue trace).

Figure S8. X-ray Powder Diffraction (XRPD) pattern for as synthesized **1-Tb** (red Trace) and the one simulated from the Mercury 3.0 using single crystal data (blue trace).

Figure S9. A view of 2D network created due to various hydrogen bonding interactions involving free arylcarboxylic acid groups, O_{amide} groups, and coordinated as well as lattice water molecules connecting various 1D chains (shown in green, magenta, and red colours) in the crystal structure of **1-Tb**.

Figure S10. FTIR spectra of as synthesized 1-Eu (red trace) and after catalysis (blue trace).

Figure S11. FTIR spectra of as synthesized 1-Tb (red trace) and after catalysis (blue trace).

Figure S12. X-ray Powder Diffraction (XRPD) pattern for as synthesized **1-Eu** before catalysis (red Trace) and after catalysis (blue trace).

Figure S13. X-ray Powder Diffraction (XPRD) pattern for as synthesized **1-Tb** before catalysis (red Trace) and after catalysis (blue trace)

Figure S14. FTIR spectra of as-synthesized 1-Eu (red trace) and after D_2O exchange experiment (blue trace).

Figure S15. FTIR spectra of as-synthesized **1-Tb** (red trace) and after D_2O exchange experiment (blue trace).

Figures S16 – S31. ¹H and ¹³C NMR spectra of representative organic products.

List of Tables:

Table S1. H-bonding distances for 1-Eu.

Table S2. H-bonding distances for **1-Tb.**

Table S3. Retention time of the organic products as observed from the gas chromatographic experiments.^a

Figure S1. FTIR spectrum of **1-Eu**.

Figure S2. FTIR spectrum of **1-Tb**.

Figure S3. Thermal Gravimetric Analysis (TGA, red trace) and Differential Scanning Calorimetric (DSC, blue trace) plots for **1-Eu**.

Figure S4. Thermal Gravimetric Analysis (TGA, red trace) and Differential Scanning Calorimetric (DSC, blue trace) plots for **1-Tb**.

Figure S5. Diffuse reflectance UV-Vis spectrum of 1-Eu.

Figure S6. Diffuse reflectance UV-Vis spectrum of 1-Tb.

Figure S7. X-ray Powder Diffraction (XRPD) pattern for as synthesized **1-Eu** (red trace) and the one simulated from the Mercury 3.0 using single crystal data (blue trace).

Figure S8. X-ray Powder Diffraction (XRPD) pattern for as synthesized **1-Tb** (red trace) and the one simulated from the Mercury 3.0 using single crystal data (blue trace).

Figure S9. A view of 2D network created due to various hydrogen bonding interactions involving free arylcarboxylic acid groups, O_{amide} groups, and coordinated as well as lattice water molecules connecting various 1D chains (shown in green, magenta, and red colours) in the crystal structure of **1-Tb**.

Figure S10. FTIR spectra of as synthesized **1-Eu** (red trace) and after catalysis (blue trace).

Figure S11. FTIR spectra of as synthesized 1-Tb (red trace) and after catalysis (blue trace).

Figure S12. X-ray Powder Diffraction (XRPD) pattern for as synthesized **1-Eu** before (red Trace) and after (blue trace) the ROR between styrene oxide and aniline.

Figure S13. X-ray Powder Diffraction (XRPD) pattern for as synthesized **1-Tb** before (red Trace) and after (blue trace) the ROR between styrene oxide and aniline.

Figure S14. FTIR spectra of as-synthesized 1-Eu (red trace) and after D_2O exchange experiment (blue trace).

Figure S15. FTIR spectra of as-synthesized **1-Tb** (red trace) and after D_2O exchange experiment (blue trace).

Figure S16. ¹H NMR spectrum of 2-((4-Ethylphenyl)amino)cyclohexanol in CDCl₃.

Figure S17. ¹³C NMR spectrum of 2-((4-Ethylphenyl)amino)cyclohexanol in CDCl₃.

Figure S18. ¹H NMR spectrum of 2-Phenyl-2-(phenylamino)ethanol in CDCl₃.

Figure S19. ¹³C NMR spectrum of 2-Phenyl-2-(phenylamino)ethanol in CDCl₃.

Figure S20. ¹H NMR spectrum of 2-Butoxy-2-phenylethanol in CDCl₃.

Figure S21. ¹³C NMR spectrum of 2-butoxy-2-phenylethanol in CDCl₃.

Figure S22. ¹H NMR spectrum of 2-(tert-Butoxy)-2-phenylethanol in CDCl₃.

Figure S23. ¹³C NMR spectrum of 2-(tert-Butoxy)-2-phenylethanol in CDCl₃.

Figure S24. ¹H NMR spectrum of 2-(Benzylthio)-2-phenylethanol in CDCl₃.

Figure S25. ¹³C NMR spectrum of 2-(Benzylthio)-2-phenylethanol in CDCl₃.

Figure S26. ¹H NMR spectrum of 2-(Ethylthio)-2-phenylethanol in CDCl₃.

Figure S27. ¹³C NMR spectrum of 2-(Ethylthio)-2-phenylethanol in CDCl₃.

Figure S28. ¹H NMR spectrum of 2-Azido-2-phenylethanol in CDCl₃.

Figure S29. ¹³C NMR spectrum of 2-Azido-2-phenylethanol in CDCl₃.

Figure S30. ¹H NMR spectrum of 3-Chloro-2-(phenylamino)propan-1-ol in CDCl₃.

Figure S31. ¹³C NMR spectrum of 3-Chloro-2-(phenylamino)propan-1-ol in CDCl₃.

Table S1	. H-bo	nding	distances	for	1-Eu.
----------	--------	-------	-----------	-----	-------

Hydrogen bonding synthon	Separation (Å)	Hydrogen bonding synthon	Separation (Å)
0107w	2.812	O8wO11w	2.836
O7wO8	2.852	O11wO9	2.896
O2O8w	2.786	O5O12w	2.703
O8wO1	2.701	O12wO2	2.722

Hydrogen bonding synthon	Separation (Å)	Hydrogen bonding synthon	Separation (Å)
O2O14W	2.826	O5O13W	2.666
O3O14W	3.014	O6O16W	2.914
O10O1W	2.709	O16WO17W	2.843
O1WO10W	2.834	O10WO17W	2.843
O4O10W	2.836	O4O10W	2.836
O8O5W	2.798	O8W017W	2.719
O13WO14W	2.837	O3O8W	2.762
O11WO13W	2.849	O4WO12W	2.721
O2WO11W	2.901	O4W08	2.927
O2O11W	2.715	O12WO13W	3.001
O3012W	2.708	O4WO12W	2.721

Table S2. H-bonding distances for **1-Tb**.

Entry	Product	Retention time (Min.)
1	OH N H CH ₃	27.0
2	OH NH	24.2
3	OH OH	16.6
4	ОН	19.7
5	OH S	29.2
6	OH S	25.7
7	OH N ₃	20.8
8	HN OH	22.8

Table S3. Retention time of the organic products as observed from the gas chromatographic experiments.^a

^aThe products were analyzed by the Perkin Elmer Clarus 580 gas chromatograph equipped with an auto injector, a flame ionization detector and an Elite 5 column (0.25 mm ID, 30 meter). Conditions: nitrogen as the carrier gas with 2 ml/min flow rate; injection volume 1.0 μ L; and detector temperature 250 °C. The oven temperature was programmed initially heating at 50 °C for 5 min, followed by heating to 120 °C at 10 °C/min (hold for 5 min), then to 200 °C at 10 °C/min (hold for 5 min) and finally to 300 °C (hold for 3 min) with the total analysis time of ca. 40 min.