Supplementary Material

Sorptive removal of Remazol Brilliant Blue R from aqueous solution by diethylenetriamine functionalized magnetic macro-reticular hybrid material

K.Z. Elwakeel*a, A.A. El-Bindary^b, A. Ismail a, A.M. Morshidy^c

^a Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt

^bChemistry Department, faculty of Science, Damietta University, Damietta 34517, Egypt ^c National Institute of Oceanography and Fisheries (NIOF), Baltim, Kafr Elsheikh, Egypt

^{*}Corresponding author: Fax: +20(0)1061694332. E-mail address: <u>Khalid_elwakeel@yahoo.com</u> (K.Z. Elwakeel).

Kinetic model	Non-Linear form	Linear form	Plot
Pseudo-First order	$q_t = q_e \left[1 - e^{-k_1 t}\right]$	$\log (q_e - q_t) = \log q_e - (\frac{k_1}{2.303}) t$	$\log\left(q_{e}\text{-} q_{t}\right) \textit{vs. t}$
Pseudo-Second order	$q_t = \frac{k_2 t}{1 + k_2 q_e t}$	$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{e}^{2}} + (\frac{1}{q_{e}})t$	(t/q_t) vs. t
Intraparticle diffusion	-	$q_t = K_i t^{0.5} + X$	$q_t vs. t^{0.5}$
Elovich equation	$\frac{dq_{t}}{dt} = \alpha e^{-\beta q}$	$q_t = \frac{1}{\beta} \ln \alpha \beta + \frac{1}{\beta} \ln \alpha$	q _t vs. lnt

Table SM1: Kinetics models and their linear forms

Isotherm	Non-Linear form	Linear form	Plot
Langmuir	$q_e = \frac{q_{m,L} K_L C_e}{1 + K_L C_e}$	$\frac{C_{\rm e}}{q_{\rm e}} = \frac{C_{\rm e}}{q_{\rm m,L}} + \frac{1}{K_L q_{\rm m,L}}$	$\frac{C_e}{q_e}$ vs. C_e
Freundlich	$q_e = K_F C_e^{1/n}$	$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e$	ln q _e vs. ln C _e
Dubinin-Radushkevich	$q_e = Q_{DR}e^{-K_{DR}\varepsilon^2}$	$\ln q_{q} = \ln Q_{DR} - K_{DR} \varepsilon^{2}$	$\ln q_e vs. \varepsilon^2$
Temkin	$q_e = \frac{RT}{b_T} [\ln(A_T C_e)]$	$q_e = (\frac{RT}{b_T}) \ln A_T + (\frac{RT}{b_T}) \ln C_e$	q _e vs. ln C _e

 Table SM2: Sorption isotherms and their linear forms

Figures captions

Figure SM1: FT-IR spectra of the MCGMA macro-reticular sorbents.

Figure SM2: Removal % of RBBR by MCGMA-I and MCGMA-II as a function of pH.

Figure SM3: Modeling of uptake kinetics with: (a) PFORE, (b) PSORE.

Figure SM4: Modeling of uptake kinetics with (a) simplified model of resistance to intraparticle diffusion (Morris and Weber equation), (b) Elovich equation.

Figure SM5: Linearized plots for sorption isotherms: (a) Langmuir equation, (b) Freundlich equation.

Figure SM6: Linearized plots for sorption isotherms: (a) Dubinin–Radushkevich equation, Temkin model.

Figure SM7: van't Hoff plots for RBBR adsorption onto the MCGMA macro-reticular sorbents.

Figure SM1

Figure SM2

Figure SM3

Figure SM4

Figure SM5

Figure SM6

Figure SM7