Supplementary Information

N-Hydroxyphthalimide Catalysts as Bioactive Pro-Oxidants

Lucio Melone,^{*a,b*} Paolo Tarsini,^{*a*} Gabriele Candiani,^{*a,**} and Carlo Punta.^{*a,**}

a Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta". Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano – Italy and INSTM local unit. Email: (G.C.) gabriele.candiani@polimi.it; (C.P.) carlo.punta@polimi.it.

b Università degli Studi e-Campus, Via Isimbardi 10, 22060 Novedrate, Como - Italy.

Table of Content:

NMR spectra	SI 1-SI 7
Cytotoxicity	SI 8
GSH content	SI 9
DLS analyses	SI 10-SI 15

Figure SI 1. ¹H-NMR and ¹³C-NMR spectra of compound 1-OH. Solvent: acetone-d₆.

Figure SI 2. ¹H-NMR and ¹³C-NMR spectrum of compound 2-OH. Solvent: DMSO-d₆.

Figure SI 3. ¹H-NMR and ¹³C-NMR spectrum of compound 2-Me. Solvent: CDCl₃.

Figure SI 4. ¹H-NMR and ¹³C-NMR spectrum of compound 3-OH. Solvent: DMSO-d₆.

Figure SI 5. ¹H-NMR and ¹³C-NMR spectrum of compound **3-Me**. Solvent: CDCl₃.

Figure SI 6. ¹H-NMR and ¹³C-NMR spectrum of compound 4-OH. Solvent: DMSO-d₆.

Figure SI 7. ¹H-NMR and ¹³C-NMR spectrum of compound 4-Me. Solvent: CDCl₃.

Figure SI 8. Cytotoxicity of **2-OH**, **3-OH**, and **4-OH** (each at its EC50 that were 100 μ M, 200 μ M, and 110 μ M, respectively) in MG-63 cells, each compared with the respective -Me derivative tested at the same concentration.

Figure SI 9. GSH content in MG-63 cells treated with **4-OH** and **4-Me** compounds *vs.* untreated control cells (CTRL).

Size Distribution by Intensity

Figure SI 10. Dynamic Light Scattering (DLS) analysis of the hydrodynamic diameter of 2-OH-aggregates in water.

Figure SI 11. Dynamic Light Scattering (DLS) analysis of the hydrodynamic diameter of **3-OH**-aggregates in water.

Size Distribution by Intensity

Figure SI 12. Dynamic Light Scattering (DLS) analysis of the hydrodynamic diameter of **4-OH**-aggregates in water.

Figure SI 13. Dynamic Light Scattering (DLS) analysis of the hydrodynamic diameter of **2-Me**-aggregates in water.

Size Distribution by Intensity

Figure SI 14. Dynamic Light Scattering (DLS) analysis of the hydrodynamic diameter of **3-Me**-aggregates in water.

Figure SI 15. Dynamic Light Scattering (DLS) analysis of the hydrodynamic diameter of 4-Me-aggregates in water.