Electronic Supplementary Information

Amine post-functionalized POSS-based porous polymers exhibiting

simultaneously enhanced porosity and carbon dioxide adsorption

properties

Dengxu Wang,^{a,b*} Wenyan Yang,^b Shengyu Feng,^{a,b*} Hongzhi Liu^{b*}

^a National Engineering Technology Research Center for Colloidal Materials,

Shandong University; ^b Key Laboratory of Special Functional Aggregated Materials

& Key Laboratory of Colloid and Interface Chemistry (Shandong University),

Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China

*Corresponding Authors. Tel: +86 531 88364866. Fax: +86 531 88564464. E-mail: dxwang@sdu.edu.cn; fsy@sdu.edu.cn; liuhongzhi@sdu.edu.cn.

Table of contents

Fig. S1 (a) The FT-IR spectra of HPP-1, HPP-1-EDA at 24 h and 72 h; (b) the FT-IR spectra were enlarged from 2000 cm⁻¹ to 800 cm⁻¹

Fig. S2 (a) The FT-IR spectra of HPP-1, HPP-1-HDA at 24 h and 72 h; (b) the FT-IR spectra were enlarged from 2000 cm⁻¹ to 800 cm⁻¹

Fig. S3 TGA curves of HPP-1, HPP-1-EDA and HPP-1-HDA under N_2 at 10 °C min⁻¹ from 30°C to 800°C

Fig. S4 XRD patterns of HPP-1, HPP-1-EDA and HPP-1-HDA

Fig. S5 FE-SEM images of HPP-1-EDA (left) and HPP-1-HDA (right)

Fig. S6 HR-TEM images of HPP-1-EDA (left) and HPP-1-HDA (right)

Fig. S7 BET plots of HPP-1 (top, r = 0.999970, C = 111.91), HPP-1-EDA (middle, r

= 0.999910, C = 166.16) and HPP-1-HDA (bottom, r = 0.999992, C = 190.22)

Fig. S8 CO₂ adsorption (closed symbols) and desorption (open symbols) isotherms of

HPP-1-EDA and HPP-1-HDA at 273 K and 298 K

Fig. S9 Ten cycles of CO_2 uptakes of HPP-1-EDA (a) and HPP-1-HDA (b) at 273 K. After saturation, the sample was regenerated with a temperature swing to 80°C and then under vacuum.

Fig. S10 Toth model fitting of CO_2 (a) and N_2 (b) adsorption isotherms of HPP-1 at 298 K

Fig. S11 Toth model fitting of CO_2 (a) and N_2 (b) adsorption isotherms of HPP-1-EDA at 298 K

Fig. S12 Toth model fitting of CO_2 (a) and N_2 (b) adsorption isotherms of HPP-1-HDA at 298 K

Fig. S1. (a) The FT-IR spectra of HPP-1, HPP-1-EDA at 24 h and 72 h; (b) the FT-IR spectra were enlarged from 2000 cm⁻¹ to 800 cm⁻¹

Fig. S2. (a) The FT-IR spectra of HPP-1, HPP-1-HDA at 24 h and 72 h; (b) the FT-IR spectra were enlarged from 2000 cm⁻¹ to 800 cm⁻¹

Fig. S3. TGA curves of HPP-1, HPP-1-EDA and HPP-1-HDA under N_2 at 10 °C min⁻

¹ from 30°C to 800°C

Fig. S4 XRD patterns of HPP-1, HPP-1-EDA and HPP-1-HDA

Fig. S5 FE-SEM images of HPP-1-EDA (left) and HPP-1-HDA (right)

Fig. S6 HR-TEM images of HPP-1-EDA (left) and HPP-1-HDA (right)

Fig. S7 BET plots of HPP-1 (top, r = 0.999970, C = 111.91), HPP-1-EDA (middle, r = 0.999910, C = 166.16) and HPP-1-HDA (bottom, r = 0.999992, C = 190.22)

Fig. S8 CO_2 adsorption (closed symbols) and desorption (open symbols) isotherms of HPP-1-EDA and HPP-1-HDA at 273 K and 298 K

Fig. S9 Ten cycles of CO₂ uptakes of HPP-1-EDA (a) and HPP-1-HDA (b) at 273 K.

After saturation, the sample was regenerated with a temperature swing to 80°C and

then under vacuum.

Henry's Law selectivity of CO₂ over N₂ for HPP-1, HPP-1-EDA and HPP-1-HDA at 298 K

A nice fitting of CO_2 and N_2 isotherms has been calculated based on Toth isotherm model.^[1,2]

$$q = q_{sat} \frac{b^{1/t} P}{(1+b^t)^{1/t}}$$

where q is the uptake in mmol g^{-1} , q_{sat} is the saturation uptake in mmol g^{-1} , P is the pressure in torr, t and b are parameters which are specific for adsorbent pairs.

The Henry law constant K, quantifies the extent of the adsorption of a given adsorbate by a solid. The magnitude of K depends on the properties of both adsorbate and solid. For the Toth isotherm, the Henry law constant is defined by the following equation:

$$K = \lim_{P \to 0} \left(\frac{dq}{dP}\right) = b^{1/t} q_{sa}$$

Finally, the Henry's Law selectivity $S_{\alpha/\beta}$ of gas α over β is given by the following equation:

Fig. S10 Toth model fitting of CO_2 (a) and N_2 (b) adsorption isotherms of HPP-1 at

Fig. S11 Toth model fitting of CO₂ (a) and N₂ (b) adsorption isotherms of HPP-1-

EDA at 298 K

Fig. S12 Toth model fitting of CO_2 (a) and N_2 (b) adsorption isotherms of HPP-1-

HDA at 298 K

References

[1] E. Neofotistou, C. D. Malliakas, P. N. Trikalitis, Chem. Eur. J., 2009, 15, 4523-

4527.

[2] B. Wang, A. P. Côté, H. Furukawa, M. O'Keeffe, O. M. Yaghi, Nature, 2008, 453,

207-211.