Electronic Supplementary Information for

Germanium and Phosphorus Co-Doped Carbon Nanotubes with High Electrocatalytic Activity for Oxygen Reduction Reaction

Qianqian Li ^{‡1}, Fang Yuan ^{‡1}, Chunyun Yan¹, Jianjie Zhu¹, Jin Sun^{*1}, Yijun Wang ¹, Jun Ren^{*2} Xilin She^{*1}

1 School of Environmental Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibres, Materials and Textiles of Shandong Province; Qingdao University, Qingdao, P R China.

2 School of Chemical and Environmental Engineering, North University of China, Taiyuan, P R China.

E-mail: xlshe@qdu.edu.cn. sunjin@qdu.edu.cn; jun.ren@nuc.edu.cn

Theoretical calculation details

We performed first-principles calculations based on spin-polarized DFT. The Vienna Ab initio Simulation Package (VASP 5.2) is used to solve Kohn-Sham equations with periodic boundary conditions and a plane wave basis set.¹⁻² Electron-ion interactions were described by projector-augmented wave (PAW) potentials;^{3,4} exchange and correlation energies were also calculated using the Perdew-Burke-Ernzerhof form of the spin-polarized generalized gradient approximation (GGA-PBE).^{5,6} We used a kinetic energy cutoff of 500 eV for all calculations, and the convergence threshold was set to 10^{-5} eV in energy and 10^{-3} eV/Å in force, and cell dimensions along the z direction were 12 Å to avoid interaction between layers. The Monkhorst–Pack k-point grids ($1 \times 1 \times 2$) are employed for Brillouin zone integration for all the structures, using approximately same k-point density for reciprocal cells of different sizes. In the present work, we have taken a (8, 0) zigzag nanotube having length twice of its lattice constant for the work function of Ge-P-CNTs with different doping-geometries. It has total 64 C atoms and is placed in a 15 Å × 15 Å × 8.572 Å tetragonal supercell. The equilibrium configurations were determined by relaxation of all atoms in the supercell.

The stability of various doping models is evaluated by calculating their formation energies (E_f) as follows,

$$E_f = E_D - E_G + \Delta n_C \mu_C - \Delta n_P \mu_P - \Delta n_{Ge} \mu_{Ge}$$
⁽¹⁾

where E_D and E_G are the energies of doped and pristine CNT (8, 0), respectively, μ_i is the chemical potential of atomic species i (i = C, P and Ge), and Δn_i is the difference of atomic species i in the doped and pristine CNT (8,0). Here μ_C , μ_P and μ_{Ge} are referred to the energy of the C atom in pristine CNT (8, 0), the energy of the P atom coming from red phosphorus unit cell, and the energy of the Ge atom in bulk, respectively.

According to our computation results shown in Table S1, single P doped CNT (8, 0) is the most stable configuration and its formation energy is lower than the other Ge-P-CNTs system in pristine CNT. The work function of CNT (8, 0) in our work has been calculated to be 4.46 eV, which is closed to the previous study.⁷

	P-CNT	Ge-CNT	P-Ge-CNT	2P-Ge-CNT	3P-Ge-CNT	4P-Ge-CNT	Pristine CNT		
E_f/eV	1.75	3.86	4.31	4.43	4.95	5.81	_		
Workfunction/e	4.48	4.72	4.77	4.39	4.28	4.24	4.46		
V									

Table S1. The calculated formation energies (in eV) of all doped CNT(8, 0) configurations.

References

- 1 G. Kresse and J. Hafner, Physical Review B, 1993, 47, 558.
- 2 G. Kresse and J. Furthmuller, *Physical Review B*, 1996, 54, 11169-11186.
- 3 P.E. Blochl, *Physical Review B*, 1994, **50**, 17953-17979.
- 4 G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 5 J.P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters, 1996, 77, 3865-3868.
- 6 J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters, 1997, 78, 1396-1401.

⁷ W. S. Su, T. C. Leung and C. T. Chan, *Physical Review B*, 2007, 76, 235413(1)-(8).

Fig. S2 LSV curves for various materials in O₂-saturated 0.1 M solution of KOH with a rotation rate of 1600 rpm.

Fig. S3 LSV curves for the Ge-P-CNTs-1, Ge-P-CNTs-3 and Ge-P-CNTs-4 at various rotating speeds.

	-0.30 V	-0.40 V	-0.475 V	-0.50 V	-0.70 V	-1.0 V
Ge-P-CNTs-	2.6	2.8	3.0	3.2	3.8	3.9
1						
Ge-P-CNTs-	3.1	3.5	3.8	3.9	4.0	4.0
2						
Ge-P-CNTs-	2.6	2.8	3.1	3.1	3.6	3.8
3						
Ge-P-CNTs-	2.8	2.9	3.2	3.4	3.9	3.9
4						

Table S2 The electron-transfer numbers obtained from K-L plots at different potentials for Ge-P-CNTs-1, Ge-P-CNTs-2, Ge-P-CNTs-3, Ge-P-CNTs-4.