†Electronic Supporting Information

A ratiometric fluorescent and colorimetric probe for selective detection of

hydrazine

Hoyin Tse,^a Qinghua Li,^a Singming Chan,^a Qihua You,^a Albert W. M. Lee^a, and Winghong Chan^{*ab}

^aDepartment of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China

^bPartner State Key Laboratory of Environmental and Bioanalysis, Kowloon Tong, Hong Kong, China

		page
	Preparation of COUMA2	2
Fig. S1	¹ H NMR spectrum of COUMA2	
Fig. S2	¹³ C NMR spectrum of COUMA2	
Fig. S3	HRMS MALDI-TOF spectrum of COUMA2	
Fig. S4	Emission of the probe COUMA2 (50μ M) interacting with 100	6
	equiv. of NH_2NH_2 in different solvent systems (50µM) at 17°C	
	for 180min: Left: a. 100% H ₂ O; b. 2:8, v/v, ACN-H ₂ O; c. 2:8,	
	v/v, EtOH-H ₂ O; d. 2:8, v/v, DMSO-H ₂ O in 0.01mM Britton-	
	Robinson buffer solution, pH=7.0.	
Fig. S5	Change of fluorescence spectra of COUMA2 ($50\mu M$) in	7
8	response to various concentration of NH ₂ NH ₂ covering the	
	concentration range from 50 μ M to 5 mM (2:8, v/v, DMSO-	
	H ₂ O, 0.01mM Britton-Robinson buffer solution, pH=7.0).	
Fig. S6	Change of fluorescence spectra of COUMA2 (50µM) in	7
	response to 100 equiv. NH_2NH_2 at different pH buffer solution	
	(2:8, v/v, DMSO-H ₂ O, 0.01mM Britton-Robinson buffer	
	solution).	
Fig. S7	Fluorescent titration of the probe (50 μ M) versus low	8
8	equivalent of hydrazine in 2:8, v/v, DMSO-H ₂ O in 40 mM	
	Britton-Robinson buffer solution, pH=7.0 with reaction time	
	of 15 hours.	
Table S1	Determination of the LOD of the probe.	8

Content

Experimental – Preparation of COUMA2

(*E*)-1-(2-acetoxyethyl)-2-(2-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)vinyl)-3,3dimethyl-3H-indol-1-ium bromide

A mixture of **COUMA1** (87 mg, 0.2 mmol)¹ and **AcOK** (100 mg, 1 mmol) in acetic anhydride (1 mL) was stirred at room temperature for 24 h under N₂ atmosphere. Then, the mixture was diluted with ethyl acetate (EA, 5 mL) and saturated potassium bromide solution (5 mL), organic layer was separated and aqueous layer was extracted (3 x 25 mL). The organic layers was combined, re-washed with saturated potassium bromide solution for three times and dried over anhydrous Na₂SO₄. Solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (EA to EA/MeOH=10/1) to afford **COUMA 2** as a dark blue solid (90 mg, 82% yield). m.p.: > 250 °C decomposed.

¹H NMR (400 MHz, CDCl₃) δ 10.32 (1H, s), 8.62 (1H, d, *J* = 16.0 Hz), 8.21 (1H, d, *J* = 16.0 Hz), 8.08 (1H, d, *J* = 9.2 Hz), 7.50-7.42 (4H, m), 6.66 (1H, dd, *J* = 9.2 Hz, *J*' = 2.4 Hz), 6.45 (1H, d, *J* = 2.4 Hz), 5.28 (2H, t, *J* = 4.8 Hz), 4.79 (2H, t, *J* = 4.8 Hz), 3.51 (4H, q, *J* = 7.2 Hz), 1.81 (6H, s),), 1.73 (3H, s), 1.28 (6H, t, *J* = 7.2 Hz) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 181.6, 170.5, 161.3, 159.0, 154.8, 151.2, 149.5, 142.9,
141.6, 134.9, 128.9, 128.4, 122.6, 113.3, 112.8, 111.4, 111.0, 109.1, 96.9, 61.9,
51.6,45.6, 30.9, 27.6, 20.4, 12.6 ppm.

HRMS (MALDI-TOF): m/z calcd for $C_{29}H_{33}N_2O_4^+$ [M⁺] 473.2435, found, 473.2429.

Notes and references

 Q. You, Y. M. Lee, W. H. Chan, N. K. Mak, A. W. M. Lee, S. C. K. Hau, T. C. W. Mak, "A colorimetric and ratiometric fluorescent pH probe based on ring

Fig. S3 HRMS MALDI-TOF spectrum of COUMA2

Fig. S4 Emission of the probe COUMA2 (50μM) interacting with 100 equiv. of NH₂NH₂ in different solvent systems (50μM) at 17°C for 180min: Left: a. 100% H₂O;
b. 2:8, v/v, ACN-H₂O; c. 2:8, v/v, EtOH-H₂O; d. 2:8, v/v, DMSO-H₂O in 40 mM Britton-Robinson buffer solution, pH=7.0.

Fig. S5 Change of fluorescence spectra of **COUMA2** (50 μ M) in response to various concentration of NH₂NH₂ covering the concentration range from 50 μ M to 5 mM (2:8, v/v, DMSO-H₂O, 40 mM Britton-Robinson buffer solution, pH=7.0).

Fig. S6 Change of fluorescence spectra of COUMA2 (50μ M) in response to 100 equiv. NH₂NH₂ at different pH buffer solution (2:8, v/v, DMSO-H₂O, 40 mM Britton-Robinson buffer solution).

Fig. S7 Fluorescent titration of the probe (50 μ M) versus low equivalent of hydrazine in 2:8, v/v, DMSO-H₂O in 40 mM Britton-Robinson buffer solution, pH=7.0 with reaction time of 15 hours.

Table S1 Determination of the LOD of the prol	be
---	----

For 15 hours reaction time			
50 μM COUMA2 vs 50 μM hydrazine	Fluorescence Ratio Value		
(1.0 equivalent of hydrazine)	(500nm/ 655nm)		
1 st trial	1.7646		
2 nd trail	1.7438		
3 rd trial	1.7510		

Estimation of the LOD (Level of Detection) of the probe:

3 x Standard Deviation of Fluorescence ratio at Low Concentration/ Slope of the Calibration Line found in **Fig. S7**

 $= 3 \times (0.010565) / 0.1703$

 $= 0.186 \ \mu M$