Supplementary Information for

Novelties of triphasic phase transfer catalysed Zinin reduction of

nitrochlorobenzene by H_2S -laden monoethanolamine

Ujjal Mondal, Aslam Puthankot, Sujit Sen*, Gaurav Singh

Catalysis Research Laboratory, Department of Chemical Engineering, National Institute of

Technology, Rourkela - 769008, India

*Corresponding author: Tel: +91-9938246590; Fax: +91-661-2462999; Email: sensujit@nitrkl.ac.in

Table of Contents:

General Information	S2
Figure S1: ¹ H-NMR spectrum of m-chloroaniline in CDCl ₃	S 3
Figure S2: ¹³ C-NMR spectrum of m-chloroaniline in CDCl ₃	S3
Spectroscopic data of m-Chloroaniline	S4
Figure S3: GC spectra showing formation of m-chloroaniline from reactant m-chloronitrobenzene solvent toluene.	e in S4
Figure S4: Mass spectra for all the peaks shown in Figure S3	S5
Figure S5: Mass spectra of product m-Chloroaniline	S5

General Information:

Method of GC-FID and GC-MS:

In present work, GC-MS of model with FID detector has been used for analysis. The column used was DB-5MS capillary column with dimension 30 m \times 320 μ m \times 0.25 μ m. The optimum programming conditions of GC is as follows:

- Oven Conditions: Initial Temperature: 60° C, Maximum Oven temperature: 324° C, Ramp 1 - 50° C/min, from 60° C to 190° C; Ramp 2 - 15° C/min, form 190° C to 230° C.
- Column Flow rate (N₂)- 1.6 mL/min, Pressure 16.724 psi,
- FID detector conditions: Heater temperature- 300° C, Air flow rate- 400ml/min, H₂ fuel flow 30ml/min, makeup flow N₂-25 mL/min

The optimum programming conditions of MS is as follows:

- Column flow rate- 1mL/min, pressure- 7.6522 psi.
- Oven conditions: Initial Temperature: 60° C, Maximum Temperature- 324° C, Initial Temperature: 60° C, Maximum Oven temperature: 324° C, Ramp 1 50° C/min, from 60° C to 190° C; Ramp 2 15° C/min, form 190° C to 230° C.

Figure S1: ¹H-NMR spectrum of m-chloroaniline in CDCl₃

Figure S2: ¹³C-NMR spectrum of m-chloroaniline in CDCl₃

m-Chloroaniline colourless liquid, ¹H-NMR (400 MHz, CDCl₃, 293K, TMS) δ= 3.665 (2H, s), 6.556 (1H, dd, J= 6.8 & 1.2 Hz), 6.6691(1H, S), 6.780(1H, d, J= 8Hz), 7.670 (1H, t, J=8Hz); ¹³C-NMR (400 MHz, CDCl₃, 293K, TMS) 113.18, 114.88, 118.91, 130.32, 134.77, 147.60.

Figure S3: GC Spectra showing formation of m-chloroaniline from reactant m-chloronitrobenzene in solvent toluene.

Figure S4: Mass spectra for all the peaks shown in Figure S3

Figure S5: Mass spectra of product m-Chloroaniline