Quasi-one-dimensional graphene nanoribbons supported MoS2 nanosheets for enhanced hydrogen evolution reaction Electronic Supplementary Information

Huahao Gu,^a Longsheng Zhang,^a Yunpeng Huang,^a Youfang Zhang,^a Wei Fan*^b and Tianxi Liu*^{a,b}

^aState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China. E-mail: txliu@fudan.edu.cn, Tel: +86-21-55664197; Fax: +86-21-65640293.

^bState Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China. E-mail: 10110440003@fudan.edu.cn

Figure captions

Fig. S1 XRD patterns of MWCNTs and GONRs.

Fig. S2 FESEM image of GNR@MoS₂-1 hybrid and its corresponding EDS mapping with atomic ratio.

Fig. S3 (A) FESEM image of MoS₂ and (B) TEM image of GNRs.

Fig. S4 TEM image of MWCNT@MoS₂ hybrid.

Fig. S5 Raman spectra of GONRs, GNRs and GNR@MoS₂-1 hybrid.

Fig. S6 TGA curves of GNRs, MoS₂ and GNR@MoS₂ hybrids.

Fig. S7 Enlarged figure of the Nyqusit plots of GNRs, MoS₂, MWCNT@MoS₂ and GNR@MoS₂-1 hybrids.

Table S1. Comparison of the HER performance between different materials.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Sample	Tafel slope	Onset potential	Refs
	(mV per decade)	(V vs. RHE)	
MoS ₂ nanoflowers coated on reduced graphene oxide paper	95	-0.19	1
Low crystalline MoS ₂ nanosheet- coated CNTs	44.6	-0.09	2
MoS ₂ formed on mesoporous graphene	42	-0.1	3
Ultrathin MoS ₂ -coated carbon nanospheres	53	-0.14	4
MoS ₂ nanoparticles grown on graphene	41	-0.1	5
Carbon paper loaded MoS ₂	120	-0.2	6
Graphene film-confined molybdenum sulfide nanoparticles	43	-0.13	7
MoS _x grown on graphene- protected 3D Ni foams	42.8	-0.109-0.141	8
MoS ₂ nanosheets decorated graphene nanoribbon	43.4	-0.11	Present work

Table	S1
-------	-----------

References:

- 1 C. B. Ma, X. Y. Qi, B. Chen, S. Y. Bao, Z. Y. Yin, X. J. Wu, Z. M. Luo, J. Wei, H.
- L. Zhang and H. Zhang, Nanoscale, 2014, 6, 5624-5629.
- 2 Y. Yan, X. M. Ge, Z. L. Liu, J. Y. Wang, J. M. Lee and X. Wang, *Nanoscale*, 2013,5, 7768.
- 3 L. Liao, J. Zhu, X. J. Bian, L. Zhu, M. D. Scanlon, H. H. Girault and B. H. Liu, *Adv. Funct. Mater.*, 2013, **23**, 5326-5333.
- 4 W. H. Hu, G. Q. Han, Y. R. Liu, B. Dong, Y. M. Chai, Y. Q. Liu and C. G. Liu, *Int. J. Hydrogen Energy*, 2015, **40**, 6552-6558.
- 5 Y. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong and H. J. Dai, *J. Am. Chem. Soc.*, 2011, **133**, 7296-7299.
- 6 J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Norskov and I. Chorkendorff, *Faraday Discuss.*, 2009, **140**, 219-231.
- 7 Z. H. Pu, Q. Liu, A. M. Asiri, A. Y. Obaid and X. P. Sun, *J. Power Sources*, 2014,
 263, 181-185.
- 8 Y. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. J. Zhang, K. H. Wei and L. J. Li, *Adv. Mater.*, 2013, **25**, 756-760.