SUPPLEMENTARY MATERIALS

Nano-FGT: A green and sustainable catalyst for the synthesis of spirooxindoles in aqueous medium

Ramen Jamatia,^a Ajay Gupta^a and Amarta Kumar Pal*^a

^aDepartment of Chemistry, Centre for Advanced Studies, North-Eastern Hill University,

Shillong-793022, India.

Tel: +91 364 2307930 ext 2636, E-mail: amartya_pal22@yahoo.com, akpal@nehu.ac.in

Fax: +91 364 2550076

Tab	le of	content

Experimental Section Table S.I. 1. X-ray crystallography data for compound 4aaa Table S.I. 2. X-ray crystallography data for compound 4aab Table S.I. 3. X-ray crystallography data for compound 4caa Spectral data of the compound 4aaa-4cac ¹H & ¹³C NMR Spectra of compounds 4aaa-4cac 16-38

Page No.

Experimental

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on Spectrum BX FT-IR, Perkin Elmer (v_{max} in cm⁻¹) on KBr disks. ¹H NMR and ¹³C NMR (400 MHz and 100 MHz respectively) spectra were recorded on Bruker Avance II-400 spectrometer in CDCl₃ and DMSO-d₆ (chemical shifts in δ with TMS as internal standard). Mass spectra were recorded on Waters ZQ-4000. Transmission Electron Microscope (TEM) was recorded on JEOL JSM 100CX. Scanning electron microscope (SEM) was recorded on JSM-6360 (JEOL). Thermogravimetric analysis (TGA) was recorded on a Perkin Elmer Precisely STA 6000 simultaneous thermal analyzer. CHN were recorded on CHN-OS analyzer (Perkin Elmer 2400, Series II).

X-ray crystallography

The X-ray diffraction data were collected at 293 K with Mo K α radiation ($\lambda = 0.71073$ Å) using Agilent Xcalibur (Eos, Gemini) diffractometer equipped with a graphite monochromator. The software used for data collection CrysAlis PRO (Agilent, 2011), data reduction CrysAlis PRO and cell refinement CrysAlis PRO. The structure were solved by direct methods and refined by full-matrix least-squares calculation using SHELXS-97¹ and SHELXL-97.²

Procedure for the synthesis of Fe₃O₄ NPs.

A mixture of 3.4 g of ferric nitrate and 3 g of ferrous sulphate was taken in a clean 250 mL round bottom flask. To it 100 mL of deionized water was added and stirred for a period of 15 min, and solution became homogeneous. After that ammonium hydroxide (25 %) was then added drop-wise till the pH of the resulting solution was attained 10. During addition of ammonium hydroxide, the formation of black precipitate was observed. The solution was

then heated at 50-60 °C for 1 h. After the time mentioned, the magnetic black precipitate was separated, washed with water until the pH became neutral and dried in oven for 5 h.

Procedure for the synthesis of nano-FGT.

The Fe₃O₄ NPs (0.5 g) were dispersed in 15 mL of deionized water and 5 mL of MeOH. The resulting colloidal solution was then sonicated for a period of 15 mins. Glutathione (0.4 g) was dissolved in 5 mL of water and added to this colloidal solution. The resulting solution was sonicated for 2h. The magnetic glutathione-functionalized nano-material was then isolated by external magnet, washed with water (3 x 5 mL), MeOH (3 X 5 mL) and dried under vacuum at 50-60 °C.

Procedure for the synthesis of spirooxindole derivatives (4aaa-4cac).

In a clean round bottom flask, 1,2-diketone (**1a-c**, 1 mmol), malonates (**2a-c**, 1 mmol), enolizable C-H activated compounds (**3a-f**, 1mmol) and nano-FGT (8 mg) in aqueous medium (3 mL) was heated at 80 °C for 15 min. After completion of reaction, the catalyst was separated via simple external magnet, washed with MeOH (3 X 5 mL) and reused. The reaction mixture was allowed to cool. The precipitate formed was then separated by simple filtration and washed with hot water (3 X 10 mL) to afford the pure product (**4aaa-4cac**).

References

- Sheldrick, G. M. Phase Annealing in SHELX-90: Direct Methods for Larger Structures. *Acta. Crystallog. Sec A.* 1990, *46*, 467-473.
- Sheldrick, G. M. A short history of SHELX. Acta. Crystallog. Sec A. 2008, 64, 112-122.

 Table S.I.1. X-ray crystallography data for compound 4aaa (CCDC No. 1031108).

Empirical formula	C ₁₉ H ₁₇ N ₃ O ₃
Formula weight	335.37
Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ /n
a(Å)	8.6467(4)
b(Å)	11.5046(5)
c(Å)	17.1290(7)
α(°)	90.00
β(°)	92.114(4)
γ(°)	90.00
Volume (Å ³)	1702.79(12)
ρ (calculated) (mg mm ⁻³)	1.3081
T(K)	291.7(3)
Absorption coefficient (µ/mm ⁻¹)	0.091
Total reflection collected	7748
Independent reflection	3886
θ range (°)	6.42 to 57.2

Final R Indexes [1>=2 σ (I)]	R1 = 0.0579, wR2 = N/A
Final R indexes [all data]	R1 = 0.1037, wR2 = 0.1367
Goodness-of-fit on F ²	1.044

 Table S.I.2. X-ray crystallography data for compound 4aab (CCDC No. 1031133).

Empirical formula	$C_{21}H_{15}N_5O_2$
Formula weight	369.39
Crystal system	Monoclinic
Space group	P2 ₁ /n
a(Å)	10.0071(13)
b(Å)	22.038(3)
c(Å)	8.2460(11)
α(°)	90.00
β(°)	98.552(12)
γ(°)	90.00
Volume (Å ³)	1798.3(4)
ρ (calculated) (mg mm ⁻³)	1.3642
T(K)	291.76(10)

Absorption coefficient (µ/mm ⁻¹)	0.092
Total reflection collected	7788
Independent reflection	4087
θ range (°)	7.04 to 57.56
Final R Indexes [1>=2 σ (I)]	R1 = 0.0563, WR2 = 0.1574
Final R indexes [all data]	R1 = 0.0726, WR2 = 0.1719
Goodness-of-fit on F ²	1.213

 Table S.I.3. X-ray crystallography data for compound 4caa (CCDC No. 1032132).

Empirical formula	$C_{23}H_{16}N_2O_3$
Formula weight	370.41
Crystal system	Monoclinic
Space group	$P2_1/n$
a(Å)	8.7800(4)
b(Å)	11.9326(6)
c(Å)	17.9072(11)
α(°)	90.00
β(°)	94.842(5)

γ(°)	90.00
Volume (Å ³)	1869.39(18)
ρ (calculated) (mg mm ⁻³)	1.3160
T(K)	291.7(3)
Absorptioncoefficient $(\mu/$	0.088
mm ⁻¹)	
Total reflection collected	8306
Independent reflection	4262
θ range (°)	6.36 to 57.58
Final R Indexes [1>=2 σ (I)]	R1 = 0.0524, wR2 = N/A
Final R indexes [all data]	R1 = 0.0903, wR2 = 0.1356
Goodness-of-fit on F ²	1.028

SPECTRAL DATA

1. Compound 4aaa

White solid. IR (KBr): 3381, 3314, 2960, 2926, 2192, 1682, 1656, 1055 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 10.39$ (s, 1H), 7.22 (s, 2H), 7.14 (t, J = 7.4 Hz, 1H), 6.97 (d, J = 7.2 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 2.55 (d, J = 5.2 Hz, 2H), 2.18-2.05 (m, 2H), 1.01 (s, 3H), 0.98 (s, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz):

δ = 195.3, 178.4, 164.6, 159.2, 142.5, 134.8, 128.6, 123.4, 122.1, 117.8, 111.2, 109.6, 57.8, 50.4, 47.2, 32.4, 28.0, 27.4. ESI- MS: *m/z* 336 [M + H]⁺. Anal. Cacld for C₁₉H₁₇N₃O₃: C, 68.05; H, 5.11; N, 12.53. Found: C, 67.88; H, 5.25; N, 12.59.

2. Compound 4aab

White solid. IR (KBr): 3461, 3296, 3177, 3071, 2952, 2922, 2196, 1654, 1070 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 10.55$ (s, 1H), 7.78 (d, J = 8 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.32-7.23 (m, 2H), 7.12-7.01 (m, 4H), 6.96 (d, J = 8 Hz, 1H), 1.63 (s, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 177.5$, 160.9, 144.7, 143.9, 141.4, 137.2, 131.9, 128.9, 128.8, 126.0, 124.5, 122.3, 119.9, 117.8, 109.7, 96.0, 56.3, 47.7, 11.6. ESI- MS: *m/z* 370 [M + H]⁺. Anal. Cacld for C₂₁H₁₅N₅O₂: C, 68.28; H, 4.09; N, 18.96. Found: C, 68.48; H, 3.99; N, 18.85.

3. Compound 4aac

White solid. IR (KBr): 3354, 3306, 3271, 3250, 3146, 3086, 2919, 2850, 2204, 1718, 1693, 1675, 1113 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 12.22$ (brs, 1H), 11.06 (s,

1H), 10.44 (s, 1H), 7.27 (s, 2H), 7.13 (t, J = 7.8 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 6.89 (t, J = 7.8 Hz, 1H), 6.77 (d, J = 7.2 Hz, 1H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 178.1$, 161.8, 158.7, 153.7, 149.7, 142.5, 133.8, 128.7, 123.9, 122.1, 117.3, 109.7, 87.2, 58.2, 47.0. ESI- MS: m/z 324 [M + H]⁺. Anal. Cacld for C₁₅H₉N₅O₄: C, 55.73; H, 2.81; N, 21.66. Found: C, 55.94; H, 2.63; N, 21.73.

4. Compound 4aad

White solid. IR (KBr): 3431, 3077, 2926, 2853, 2230, 1724, 1697, 1682, 1101 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 10.51$ (s, 1H), 7.40 (s, 2H), 7.18 (t, J = 7.8 Hz, 1H), 7.07 (d, J = 7.2 Hz, 1H), 6.95 (t, J = 7.8 Hz, 1H), 6.86 (d, J = 8 Hz, 1H), 3.45 (s, 3H), 3.09 (s, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 177.7$, 159.2, 157.9, 151.7, 149.4, 141.9, 133.1, 128.2, 123.3, 121.6, 116.5, 109.3, 87.1, 57.7, 47.3, 29.0, 27.4. ESI- MS: *m/z* 352 [M + H]⁺. Anal. Cacld for C₁₇H₁₃N₅O₄: C, 58.12; H, 3.73; N, 19.93. Found: C, 58.17; H, 3.54; N, 20.16.

5. Compound 4aae

White solid. IR (KBr): 3354, 3306, 3145, 2912, 2833, 2204, 1718, 1686, 1113 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): δ = 13.59 (brs, 1H), 12.37 (s, 1H), 10.47 (s, 1H), 7.19 (t, *J* = 8 Hz, 1H), 7.09-7.05 (m, 3H), 6.97 (t, *J* = 8 Hz, 1H), 6.85 (d, *J* = 7.4 Hz, 1H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): δ = 177.1, 173.9, 158.9, 158.0, 152.5, 142.0, 132.7, 128.3, 123.5, 121.6, 116.6, 109.2, 91.4, 57.4, 46.5. ESI- MS: *m/z* 340 [M + H]⁺. Anal. Cacld for C₁₅H₉N₅O₃S: C, 53.09; H, 2.67; N, 20.64. Found: C, 52.93; H, 2.65; N, 20.72.

6. Compound 4aaf

White solid. IR (KBr): 3360, 3297, 3254, 3060, 2924, 2853, 2207, 1711, 1677, 1083 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 10.69$ (s, 1H), 7.98 (d, J = 7.6 Hz, 1H), 7.75 (t, J = 8 Hz, 1H), 7.61 (s, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 7.2 Hz, 1H), 6.96 (t, J = 7.4 Hz, 1H), 6.89 (d, J = 8.8 Hz, 1H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 177.1$, 158.4, 158.1, 155.0, 152.0, 142.1, 133.3, 132.9, 128.7, 124.6, 123.7, 122.7, 121.9, 116.8, 116.4, 112.4, 109.4, 101.3, 56.9, 47.5. ESI- MS: m/z 358 [M + H]⁺. Anal. Cacld for C₂₀H₁₁N₃O₄: C, 67.23; H, 3.10; N, 11.76. Found: C, 67.19; H, 3.01; N, 11.61.

7. Compound 4aba

White solid. IR (KBr): 3372, 3241, 3181, 2926, 2849, 1714, 1688, 1670, 1053 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 10.01$ (s, 1H), 7.59 (brs, 2H), 7.06 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 7.2 Hz, 1H), 6.80 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 8 Hz, 1H), 3.80-3.75 (m, 2H), 2.56-2.42 (dd, J = 18, 34.8 Hz, 2H), 2.18-2.02 (dd, J = 15.4, 48 Hz, 2H), 1.08 (s, 3H), 1.00 (s, 3H), 0.87 (t, J = 7 Hz, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 194.3$, 179.9, 167.5, 162.1, 159.0, 143.8, 135.8, 126.9, 122.0, 120.4, 113.1, 108.1, 76.2, 58.7, 50.6, 46.5, 31.4, 27.9, 26.7, 12.9. ESI- MS: *m/z* 383 [M + H]⁺. Anal. Cacld for C₂₁H₂₂N₂O₅: C, 65.96; H, 5.80; N, 7.33. Found: C, 66.20; H, 5.68; N, 7.20.

8. Compound 4abb

White solid. IR (KBr): 3370, 3210, 3038, 2905, 2849, 1701, 1642, 1035 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 10.28$ (s, 1H), 7.99 (s, 2H), 7.68 (d, J = 8.8 Hz, 2H), 7.36 (t, J = 7.8 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 6.82-6.72 (m, 3H), 3.69-3.63 (m, 2H), 1.52 (s, 3H), 0.68 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 179.5$, 167.9, 161.3, 144.2, 143.8, 141.8, 137.3, 135.6, 128.8, 127.3, 125.8, 122.8, 121.57, 121.52, 119.8, 108.7, 97.9, 74.6, 58.8, 12.9, 11.6. ESI- MS: m/z 417 [M + H]⁺. Anal. Cacld for C₂₃H₂₀N₄O₄: C, 66.34; H, 4.84; N, 13.45. Found: C, 66.18; H, 4.77; N, 13.39.

9. Compound 4aca

White solid. IR (KBr): 3355, 3242, 1715, 1686, 1054 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 10.15$ (bs, 1H), 7.81 (bs, 2H), 7.04-6.75 (m, 3H), 6.71 (d, J = 8.4 Hz, 1H), 3.27 (s, 3H), 2.63-2.45 (m, 2H), 2.19 (d, J = 16.0 Hz, 1H), 2.04 (d, J = 16.0 Hz, 1H), 1.05 (s, 3H), 0.97 (s, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 100 MHz): $\delta = 193.9$, 179.4, 167.1, 161.7, 158.4, 143.0, 135.1, 126.5, 121.5, 119.9, 112.5, 107.5, 75.8, 50.0, 49.4, 46.0, 30.9, 27.3, 26.1. ESI- MS: m/z 369 [M + H]⁺. Anal. Cacld for C₂₀H₂₀N₂O₅: C, 65.21; H, 5.47; N, 7.60. Found: C, 65.29; H, 5.64; N, 7.35.

10. Compound 4baa

White solid. IR (KBr): 3435, 3172, 2960, 2931, 2187, 1684, 1667, 1054 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): δ = 7.28-7.24 (m, 1H), 7.02-6.98 (m, 2H), 6.90-6.88 (m, 3H), 3.22 (s, 3H), 2.55 (d, *J* = 1.2 Hz, 2H), 2.19-2.08 (dd, *J* = 16.4, 27.2 Hz, 2H), 1.10 (s, 3H), 1.06 (s, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): δ = 194.5, 176.4, 163.8, 158.8, 143.3, 133.3, 128.2, 122.5, 122.2, 117.0, 110.8, 107.8, 57.1, 50.0, 46.4, 31.8, 27.7, 27.1, 26.1.

ESI- MS: m/z 350 [M + H]⁺. Anal. Cacld for C₂₀H₁₉N₃O₃: C, 68.75; H, 5.48; N, 12.03. Found: C, 68.46; H, 5.57; N, 12.14.

11. Compound 4bab

White solid. IR (KBr): 3359, 3314, 3068, 2956, 2853, 2197, 1657, 1129 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 7.79$ (d, J = 8 Hz, 2H), 7.49 (t, J = 7.8 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.32-7.26 (m, 3H), 7.19 (d, J = 7.6 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 3.30 (s, 3H), 1.53 (s, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 175.7$, 161.1, 144.7, 143.8, 142.7, 137.1, 131.1, 129.0, 128.8, 126.0, 124.2, 123.0, 120.0, 117.6, 108.1, 95.8, 56.1, 47.3, 26.2, 11.6. ESI- MS: *m/z* 384 [M + H]⁺. Anal. Cacld for C₂₂H₁₇N₅O₂: C, 68.92; H, 4.47; N, 18.27. Found: C, 69.06; H, 4.53; N, 18.24.

12. Compound 4bba

White solid. IR (KBr): 3360, 3275, 2960, 2931, 1696, 1686, 1675, 1054 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): δ = 7.56 (brs, 2H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.93-6.87 (m, 2H), 6.77 (d, *J* = 7.2 Hz, 1H), 3.78-3.72 (q, *J* = 7.2 Hz, 2H), 3.22 (s, 3H), 2.57-2.44 (dd, *J* =

17.2, 31.2 Hz, 2H), 2.18-2.02 (dd, J = 16, 46 Hz, 2H), 1.09 (s, 3H), 1.00 (s, 3H), 0.83 (t, J = 7 Hz, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 195.0$, 178.9, 168.0, 162.6, 159.5, 145.1, 135.0, 127.7, 122.3, 121.7, 113.6, 106.8, 76.5, 59.2, 51.1, 46.6, 31.8, 28.6, 27.2, 26.3, 13.7. ESI- MS: m/z 397 [M + H]⁺. Anal. Cacld for C₂₂H₂₄N₂O₅: C, 66.65; H, 6.10; N, 7.07. Found: C, 66.53; H, 5.92; N, 6.79.

13. Compound 4caa

Light yellow solid. IR (KBr): 3370, 3295, 3061, 2954, 2874, 2194, 1718, 1666, 1053 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 8.20$ (d, J = 8.4 Hz, 1H), 7.92-7.87 (m, 2H), 7.82 (t, J = 8 Hz, 1H), 7.65 (t, J = 8 Hz, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.07 (brs, 2H), 2.61 (s, 2H), 2.14-2.04 (m, 2H), 1.10 (s, 3H), 1.07 (s, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 203.2$, 194.8, 164.0, 158.6, 142.9, 140.5, 132.3, 131.0, 129.6, 128.4, 128.0, 124.2, 121.1, 119.4, 117.3, 112.1, 58.2, 50.8, 49.8, 31.8, 27.6, 27.3. ESI- MS: *m/z* 371 [M + H]⁺. Anal. Cacld for C₂₃H₁₈N₂O₃: C, 74.58; H, 4.90; N, 7.56. Found: C, 74.68; H, 4.95; N, 7.62.

14. Compound 4cab

Yellow solid. IR (KBr): 3454, 3310, 3068, 2931, 2853, 2198, 1707, 1073 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 8.38$ (d, J = 7.2 Hz, 1H), 8.08 (t, J = 8 Hz, 2H), 7.93 (t, J = 7.4 Hz, 1H), 7.84-7.78 (m, 3H), 7.56-7.48 (m, 5H), 7.35 (t, J = 6.8 Hz, 1H), 1.10 (s, 3H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 203.1$, 161.0, 144.7, 143.8, 141.1, 140.3, 137.2, 132.3, 130.5, 129.9, 129.0, 128.9, 128.5, 128.1, 126.1, 124.9, 122.3, 121.3, 121.2, 120.0, 117.9, 97.0, 57.0, 51.9, 11.9. ESI- MS: m/z 405 [M + H]⁺. Anal. Cacld for C₂₅H₁₆N₄O₂: C, 74.25; H, 3.99; N, 13.85. Found: C, 74.12; H, 3.83; N, 14.11.

15. Compound 4cac

Light yellow solid. IR (KBr): 3377, 3317, 3258, 3210, 2924, 2857, 2203, 1716, 1695, 1681, 1106 cm⁻¹. ¹H NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 13.74$ (brs, 1H), 12.28 (s, 1H), 8.35-8.03 (m, 2H), 7.81 (s, 2H), 7.69-7.29 (m, 4H). ¹³C NMR (CDCl₃ + DMSO-d₆, 400 MHz): $\delta = 203.4$, 161.6, 158.2, 153.3, 149.2, 142.2, 140.9, 131.7, 131.3, 129.7, 128.5, 128.0, 124.4, 121.2, 120.0, 116.9, 87.8, 58.3, 50.5. ESI- MS: *m*/*z* 359 [M + H]⁺. Anal. Cacld for C₁₉H₁₀N₄O₄: C, 63.69; H, 2.81; N, 15.64. Found: C, 63.83; H, 2.60; N, 15.45.

¹H and ¹³CNMR of Compound 4aaa

¹H and ¹³CNMR of Compound 4aad

¹H and ¹³CNMR of Compound **4aaf**

-7.593

¹H and ¹³CNMR of Compound **4abb**

¹H and ¹³CNMR of Compound 4aca

¹H and ¹³CNMR of Compound 4baa

¹H and ¹³CNMR of Compound 4bab

¹H and ¹³CNMR of Compound **4bba**

¹H and ¹³CNMR of Compound 4caa

¹H and ¹³CNMR of Compound **4cab**

