Supplementary information

RAFT polymerization of Bromotyramine-based 4 -acryloyl-1,2,3- triazole: A Functional Monomers and Polymers Family through Click Chemistry.

Sofyane Andjouh, a Christine Bressy, *, a and Yves Blachea

^a Laboratoire Matériaux Polymères-Interfaces-Environnement Marin (MAPIEM), Université de Toulon, EA 4323, 83957 La Garde, France.

Figure 1. ¹H-NMR spectra of (a) 4-ATri 4a in CDCl₃, (b) its purified homopolymer (4-ATri 4a) in CDCl₃

Figure 2. ¹H-NMR spectra of (a) **4-ATri 4c** in CDCl₃, (b) its purified homopolymer (**4-ATri 4c**) in CDCl₃

Figure 3. ¹H-NMR spectra of (a) 4-ATri 4d in CDCl₃, (b) its purified homopolymer (4-ATri 4d) in CDCl₃

Figure 4. Monomer conversion vs time. Homopolymerizations of triazole acrylate 4-ATri 4b using CMDT as CTA. CMDT/AIBN molar ratio of 10/1. DMSO-d₆ at 70°C (\blacktriangle), DMSO-d₆ at 60°C (\blacksquare), DMF-d₇ at 70°C (\bullet), DMF-d₇ at 60°C (\bullet) and DMSO-d₆ with absence of CMDT at 70°C (\times).

Figure 5. Monomer conversion vs time. Homopolymerizations of triazole acrylate 4-ATri 4b at 60°C. CTA/AIBN molar ratio of 10/1 in DMSO-d₆ using CMDT(\blacksquare) and DDMAT (\bullet) as CTA.

Figure 6. Monomer conversion *vs* time. Homopolymerizations of triazole acrylates. CDMT/AIBN molar ratio of 10/1 at 60°C in DMSO-d₆. 4-ATri 4a (\blacktriangle), 4-ATri 4b (\blacksquare), 4-ATri 4c (\bullet) and 4-ATri 4d (\bullet).

Figure 7. Evolution of M_n^{NMR} (t) *vs* monomer conversion during the RAFT polymerization of 4-ATri 4a (\blacktriangle) at 60°C in DMSO-d₆.

Figure 8. Evolution of M_n^{NMR} (t) vs monomer conversion during the RAFT polymerization of 4-ATri 4c (o) at 60°C in DMSO-d₆.

Figure 9. Evolution of M_n^{NMR} (t) *vs* monomer conversion during the RAFT polymerization of 4-ATri 4d (•) at 60°C in DMSO-d₆.

Figure 10. DCS thermograms of (**a**) p(4-ATri 4a), (**b**) p(4-ATri 4b), (**c**) p(4-ATri 4c) and (**d**) p(4-ATri 4d).

Figure 11. TGA traces of (**a**) p(4-ATri 4a), (**b**) p(4-ATri 4b), (**c**) p(4-ATri 4c) and (**d**) p(4-ATri 4d) under nitrogen at a heating rate of 10 °C/min.

Figure 12. TGA weight loss derivative as a function of temperature for (a) p(4-ATri 4a), (b) p(4-ATri 4b), (c) p(4-ATri 4c) and (d) p(4-ATri 4d) under nitrogen at a heating rate of 10 °C/min.